
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008

Lecture 20— Effect Systems; Continuation Passing;

Course Summary and Everything Else

Dan Grossman CSE505 Fall 2008, Lecture 20 1

'

&

$

%

79.5 Minutes of PL left

Today’s lecture:

1. Effect systems, finally :-)

2. Continuation Passing — and CPS transformation

3. Overview of what we did — and didn’t — do

Will likely go too fast for it all to sink in

• But at least “you know it’s out there”

Today’s material will be 0%–3% of the final

But overview still hopefully very useful for understanding the course

Dan Grossman CSE505 Fall 2008, Lecture 20 2

'

&

$

%

More about final exam

• Thursday December 11, 8:30-10:20AM

– I didn’t pick the early time

• Intended to test the material since the midterm (lectures 10–19

and homeworks 3–5), but obviously material accumulates

• Will post old exams and cover sheet

• You can bring your own reference sheet

Dan Grossman CSE505 Fall 2008, Lecture 20 3

'

&

$

%

Type-and-Effect Systems

Our plain-old type systems have judgments like Γ ` e : τ to mean:

• e won’t get stuck

• If e produces a value, that value has type τ

Adding effects reuses the “plumbing” of our typing rules to compute

something about “how e executes”.

• There are many things we might want to conservatively

approximate

– Example: What exceptions might get thrown

• All effect systems are very similar, especially how they treat

functions

– Example: All values have no effect since their “computation”

does nothing

Dan Grossman CSE505 Fall 2008, Lecture 20 4

'

&

$

%

First a type system

(In this example, exceptions raise constant strings s)

τ ::= bool | τ → τ | τ ∗ τ

e ::= x | true | false | λx. e | e e | (e, e) | e.1 | e.2

| if e then e else e | raise s | try e handle s e

Γ ` e : τ
Γ ` x : Γ(x) Γ ` true : bool Γ ` false : bool

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2

Γ ` e.2 : τ2

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Γ ` raise s : τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` try e1 handle s e2 : τ

Dan Grossman CSE505 Fall 2008, Lecture 20 5

'

&

$

%

Add effects
ε ::= ...sets of strings...

τ ::= bool | τ
ε→ τ | τ ∗ τ

e ::= x | true | false | λx. e | e e | (e, e) | e.1 | e.2

| if e then e else e | raise s | try e handle s e

Γ ` e : τ ; ε
Γ ` x : Γ(x); ∅ Γ ` true : bool; ∅ Γ ` false : bool; ∅

Γ, x : τ1 ` e : τ2; ε

Γ ` λx. e : τ1
ε→ τ2; ∅

Γ ` e1 : τ2
ε3→ τ1; ε1 Γ ` e2 : τ2; ε2

Γ ` e1 e2 : τ1; ε1 ∪ ε2 ∪ ε3

Γ ` e1 : τ1; ε1 Γ ` e2 : τ2; ε2

Γ ` (e1, e2) : τ1 ∗ τ2; ε1 ∪ ε2

Γ ` e : τ1 ∗ τ2; ε

Γ ` e.1 : τ1; ε

Γ ` e : τ1 ∗ τ2; ε

Γ ` e.2 : τ2; ε

Γ ` e1 : bool; ε1 Γ ` e2 : τ ; ε2 Γ ` e3 : τ ; ε3

Γ ` if e1 then e2 else e3 : τ ; ε1 ∪ ε2 ∪ ε3

Γ ` raise s : τ ; {s}

Γ ` e1 : τ ; ε1 Γ ` e2 : τ ; ε2

Γ ` try e1 handle s e2 : τ ; (ε1 − {s}) ∪ ε2

Dan Grossman CSE505 Fall 2008, Lecture 20 6

'

&

$

%

Key facts

Soundness: If · ` e : τ ; ε and e raises uncaught exception s,

then s ∈ ε.

• Corollary to Preservation and Progress (once you define the

operational semantics for exceptions)

All effect systems work this way:

• Values effectless

• Functions have latent effects

• Conservative due to if and try/handle

• Subeffecting (not shown) is sound and important

– Functions covariant in effects

Only a couple rules special to this effect system

• Not always sets and ∪

Dan Grossman CSE505 Fall 2008, Lecture 20 7

'

&

$

%

Other effect systems

• Definitely terminates (0) or possibly diverges (1)

– Give fix e effect 1

– Give values effect 0

– Treat ∪ as max

– No change to rules for functions, pairs, conditionals, etc.

• What type casts might occur (Nita POPL08)

• Are the right variables used in transactions (Moore POPL08)

• Does code obey a locking protocol

• ...

Really a general way to lift static analysis to higher-order functions

• And you want things like effect polymorphism to give a useful type

to functions like map

Dan Grossman CSE505 Fall 2008, Lecture 20 8

'

&

$

%

Continuation-Passing Style

A program is in CPS if no function ever returns

• Instead every function takes an extra argument (a function called

“the continuation”) that it calls with the result

• So an interpreter does not need a call-stack

• Every call is a tail call

Surprising part: There exists CPS transformations that take any

λ-calculus program and produce an equivalent one in CPS.

• When translation-target runs, it builds closures that call other

closures and this “list” is “where the call-stack went”

• A term of type τ1 → τ2 translates to one of type

τ1 → (τ2 → τans) → τans , i.e., a “foo returner” becomes a λ

that takes a-λ-that-takes-a-“foo”-and-finishes-the-program and

finishes-the-program.

Dan Grossman CSE505 Fall 2008, Lecture 20 9

'

&

$

%

Target language

We’ll consider λ-calculus with addition and call variables “values” (for

sake of translation, no effect on semantics)

Target of our translation (“programs in CPS”):

e ::= v | v v | v v v | v (v + v)

v ::= x | c | λx. e

So we need no call-stack: at each step we either call a function (with

1 or 2 arguments) or add two constants.

• Theorem: Evaluation stays in this smaller language.

Now we just need a translation C(e) from any λ-calculus term to

something in this smaller language that is equivalent.

• Actually C(e) (λx. x) to “get started” since C(e) will be a

function that takes a continuation k and passes its result to k.

Dan Grossman CSE505 Fall 2008, Lecture 20 10

'

&

$

%

Here is one

Define translation C(e) by mutual induction with V (v) that helps

translate values-and-variables.

C(e) produces a function taking a continuation.

C(v) = λk. k V (v)

C(e1 + e2) = λk. C(e1) (λx1. C(e2) (λx2. k (x1 + x2)))

C(e1 e2) = λk. C(e1) (λx1. C(e2) (λx2. x1 x2 k))

V (c) = c

V (x) = x

V (λx. e) = λx. λk. C(e) k

Note: This translation is pretty inefficient; fancier ones exist.

Dan Grossman CSE505 Fall 2008, Lecture 20 11

'

&

$

%

More on Continuations

This translation is important in theory and at the core of SML/NJ.

• Also advocated in many compiler “middle ends”

– “Compiling with continuations” (Appel 80s, Kennedy 07)

– Notice how every intermediate expression gets bound to a

variable

• Makes implementing letcc and throw from lecture 10 easy and

O(1).

• A great way to think about and program web computations —

encode continuation in URL to avoid server-side state and support

the back-button.

– I can point you to papers.

Dan Grossman CSE505 Fall 2008, Lecture 20 12

'

&

$

%

Overview

Review and highlights of what we did and did not do:

1. Semantics

2. Encodings

3. Language Features

4. Concurrency

5. Types

6. Metatheory

Dan Grossman CSE505 Fall 2008, Lecture 20 13

'

&

$

%

Review of Basic Concepts

Semantics matters!

We must reason about what software does and does not do, if

implementations are correct, and if changes preserve meaning.

So we need a precise meaning for programs.

Do it once: Give a semantics for all programs in a language. (Infinite

number, so use induction for syntax and semantics)

Real languages are big, so build a smaller model. Key simplifications:

• Abstract syntax

• Omitted language features

Danger: not considering related features at once

Dan Grossman CSE505 Fall 2008, Lecture 20 14

'

&

$

%

Operational Semantics

An interpreter can use rewriting to transform one program state to

another one (or an immediate answer).

When our interpreter is written in the metalanguage of a judgment

with inference rules, we have an “operational semantics”.

This metalanguage is convenient (instantiating rule schemas),

especially for proofs (induction on derivation height).

Omitted: Automated checking of judgments and proofs.

• Proofs by hand are wrong, especially for full languages.

• See Coq, Twelf, . . .

Dan Grossman CSE505 Fall 2008, Lecture 20 15

'

&

$

%

Denotational Semantics

A compiler can give semantics as translation plus semantics-of-target.

If the target-language and meta-language are math, this is

denotational semantics.

Can lead to elegant proofs, exploiting centuries of mathematics.

But building models is really hard!

Omitted: Denotation of while-loops (need recursion-theory),

denotation of lambda-calculus (maps of environments, etc.)

Meaning-preserving translation is compiler-correctness.

Dan Grossman CSE505 Fall 2008, Lecture 20 16

'

&

$

%

Equivalence

With semantics plus “what is observable” we can determine

equivalence.

In security, often more is observable than PLs assume.

• Because PLs want optimizations to be “correct”

• Because security is worried about “side channels”

In the real world, many languages have “implementation defined”

features:

• C/C++ word-size, endianness, etc.

• Scheme evaluation order

• Java thread scheduling

• SML int size

• . . .

Dan Grossman CSE505 Fall 2008, Lecture 20 17

'

&

$

%

Semantics Used?

• Standard ML has a small (few dozen pages) formal semantics.

• Caml has an implementation.

• Standards bodies write boat anchors.

• Some real-word successes, e.g., Wadler and XML queries, Manson

and Java Memory Model, ...

Dan Grossman CSE505 Fall 2008, Lecture 20 18

'

&

$

%

Encodings

Our small models aren’t so small if we can encode other features as

derived forms.

Example: pairs in lambda-calculus, triples as pairs, . . .

“Syntactic sugar” is a key concept in language-definition and

language-implementation.

But special-cases are important too.

• Example: if-then-else in Caml.

• This is often a design question.

Dan Grossman CSE505 Fall 2008, Lecture 20 19

'

&

$

%

Language Features

We studied many features: assignment, loops, scope, higher-order

functions, tuples, records, datatypes, references, threads, objects,

constructors, multimethods, . . .

We demonstrated some good design principles:

• Bindings should permit systematic renaming (α-conversion)

• Constructs should be first-class: permit abstraction and

abbreviation using full power of language

• Constructs have intro and elim forms

• Eager vs. lazy (evaluation order, thunking)

Recall datatypes and classes support different flavors of extensibility.

• Omitted: work on better supporting both flavors (mixins, traits,

open datatypes, EML, . . .)

Dan Grossman CSE505 Fall 2008, Lecture 20 20

'

&

$

%

More on first-class

We didn’t emphasize enough the convenience of first-class status: any

construct can be passed to a function, stored in a data structure, etc.

Example: We can apply functions to computed arguments (f(e) as

opposed to f(x)). But in YFL, can you:

• Compute the function e′(e)

• Pass arguments of any type (e.g., other functions)

• Compute argument lists (cf. Java, Scheme, ML)

• Pass operators (e.g., +)

• Pass projections (e.g., .l)

1st-class allows parameterization; every language has limits

Dan Grossman CSE505 Fall 2008, Lecture 20 21

'

&

$

%

Omitted feature: Arrays

An array is a pretty simple feature we just never bothered with:

• introduction form: make-array function of a length and an initial

value (or function for computing it)

• elimination forms: subscript and update, may get stuck (or cost

the economy billions if it’s C)

Why do languages have arrays and records?

• Arrays allow 1st-class lengths and index-expressions

• Records have fields with different types

• Hence some “very dynamic” languages like Ruby just have arrays

Nice to have the vocabulary we need!

Dan Grossman CSE505 Fall 2008, Lecture 20 22

'

&

$

%

Omitted feature: Exceptions

Semantics are pretty easy:

• One way: Use a stack of evaluation contexts; throw pops one off

• Another way: Compile away to sums (normal result or exception

result) and put a match around every expression.

Typing is also easy: An exception throw can have any type (types

describe the value produced by normal termination)

Dan Grossman CSE505 Fall 2008, Lecture 20 23

'

&

$

%

Omitted feature: Macros

We deemed syntax “uninteresting” only because the parsing problem is

solved.

• Grammars admitting fast automated parsers an amazing success

• Gives rigorous technical reasons to despise deviations

(e.g., typedef in C)

But syntax extensions (e.g., macros) are now understood as more than

textual substitution

• Always was (strings, comments, etc.)

• Macro hygiene (related to capture) crucial, rare, and sometimes

not what you want.

• Not a closed area

Dan Grossman CSE505 Fall 2008, Lecture 20 24

'

&

$

%

Omitted feature: Foreign-function calls

Language designers/implementors often guilty of “control the world

syndrome”.

Heterogeneity increasingly important and relying on byte-based I/O

throws away everything we have been doing across langugage

boundaries.

Dan Grossman CSE505 Fall 2008, Lecture 20 25

'

&

$

%

Omitted feature: Unification

Some languages do search for you using unification

append([], X, X)

append(cons(H,T), X, cons(H,Y)) :- append(T, X, Y)

append(cons(1,cons(2,null)), cons(3,null), Z)

append(W, cons(4,null), cons(5,cons(4,null)))

• More than one rule can apply (leads to search)

• Must instantiate rules with same terms for same variables.

Sound familiar? Very close connection with our meta-language of

inference rules. Our “theory” can be a programming paradigm!

(See also the Alchemy project at UW for unification with probabilities.)

Dan Grossman CSE505 Fall 2008, Lecture 20 26

'

&

$

%

More omitted features: Haskell coolness

Some functional languages (most notably Haskell) have call-by-need

semantics for function application.

Haskell is also purely functional, moving any effects (exceptions, I/O,

references) to a layer above using something called monads. So at the

core level, you know (f x)*2 and (f x)+(f x) are equivalent.

Programming in a monadic style is useful for lots of things (but takes

an hour to teach).

Haskell also has type classes which allow you to constrain type

variables via “interfaces”.

• Similar uses to bounded polymorphism and interfaces, but not

based on subtyping.

Dan Grossman CSE505 Fall 2008, Lecture 20 27

'

&

$

%

Omitted features summary

I’m sure there are more:

1. Arrays

2. Macros

3. Exceptions

4. Foreign-function calls

5. Unification

6. Lazy evaluation (another name for call-by-need)

7. Monads

8. Type classes

Dan Grossman CSE505 Fall 2008, Lecture 20 28

'

&

$

%

Concurrency

Feels like “more than just more languages features” because it changes

so many of your assumptions.

Omitted: Process calculi (e.g., π-caclulus) — “the lambda calculus of

concurrent and distributed programming”

The hot thing: software transactions (atomic : (unit->’a)->’a)

• Lots of papers from the WASP group in the last couple years

– Formal operational semantics, equivalence between them under

appropriate effect systems

– Prototype implementations and optimizations for ML, Scheme,

Java

– My favorite analogy

Dan Grossman CSE505 Fall 2008, Lecture 20 29

'

&

$

%

Types

• A type system can prevent bad operations (so safe

implementations need not include run-time checks)

• I program fast in ML by relying on type-checking

• Deep connection to logic

• “Getting stuck” is undecidable so decidable type systems rule out

good programs (to be sound rather than complete)

– May need new language constructs (e.g., fix in STLC)

– May require code duplication (hence polymorphism)

– A balancing act to avoid the Pascal-array debacle

Safety = Preservation + Progress (an invariant is preserved and if

the invariant holds you’re not stuck) is a general phenomenon.

Dan Grossman CSE505 Fall 2008, Lecture 20 30

'

&

$

%

Just an approximation

There are other approaches to describing/checking decidable

properties of programs:

• Dataflow analysis (plus: more convenient for flow-sensitive, minus:

less convenient for higher-order); see 501

• Abstract interpretation (plus: defined very generally, minus:

defined very generally)

• Model-checking (a course in itself 3 years ago)

Zealots of each approach (including types) emphasize they’re more

general than the others.

Dan Grossman CSE505 Fall 2008, Lecture 20 31

'

&

$

%

Polymorphism

If every term has one simple type, you have to duplicate too much

code (can’t write a list-library).

Subtyping allows subsumption. A subtyping rule that makes a safe

language unsafe is wrong.

Type variables allow an incomparable amount of power. They also let

us encode strong-abstractions, the end-goal of modularity and security.

Ad-hoc polymorphism (static-overloading) saves some keystrokes.

Dan Grossman CSE505 Fall 2008, Lecture 20 32

'

&

$

%

Inference

Real languages allow you to omit more type information than our

formal typed languages.

Inference is elegant for some languages, impossible for others.

• Not a closed area (e.g., Generalized Abstract Data Types)

But the error messages are often bad because a small error may cause

a type problem “far away”.

• That’s why Ben Lerner and I did “Seminal”

Dan Grossman CSE505 Fall 2008, Lecture 20 33

'

&

$

%

Metatheory

We studied many properties of our models, especially typed λ-calculi:

safety, termination, parametricity, erasure

Remember to be clear about what the question is!

Example: Erasure... Given the typed language, the untyped language,

and the erase meta-function, do erasure and evaluation commute?

Example: Subtyping decidable... Given a collection of inference rules

for ∆ τ̀1 ≤ τ2, does there exist an algorithm to decide (for all) ∆,

τ1 and τ2 whether a derivation of ∆ τ̀1 ≤ τ2 exists?

Dan Grossman CSE505 Fall 2008, Lecture 20 34

'

&

$

%

Last Slide

• Languages and models of them follow guiding principles

• Now you can’t say I didn’t show you continuation-passing style

• We can apply this stuff to make software better!!

Defining program behavior is a key obligation of computer science.

Proving programs do not do “bad things” (e.g., violate safety) is a

“simpler” undecidable problem.

• A necessary condition for modularity

• Hard work (subtle interactions demand careful reasoning)

• Fun (get to write compilers and prove theorems)

You might have a PL issue in the next few years... I’m in CSE556.

Dan Grossman CSE505 Fall 2008, Lecture 20 35

