CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2008
Lecture 3— Operational Semantics for IMP

-

Dan Grossman CSE505 Fall 2008, Lecture 3

/VVhere we are

e Done: Caml basics, IMP syntax, structural induction
e Today: IMP operational semantics

e Tonight: You could (almost?) finish homework 1

-

Dan Grossman CSE505 Fall 2008, Lecture 3

/Review

IMP’s abstract syntax is defined inductively:
s == skip|xz:=e|s;s|ifess|whilees
e = clx|et+e|exe
c € {..,-2,-1,0,1,2,...})
(x € {X19X2yeeesT1sV25ecc9Z19Z290ccsess})
We haven't said what programs mean yet! (Syntax is boring)

Encode our “social understanding” about variables and control flow

-

Dan Grossman CSE505 Fall 2008, Lecture 3 3

/Outline

e Semantics for expressions
1. Informal idea; the need for heaps
. Definition of heaps

2

3. The evaluation judgment (a relation form)

4. The evaluation inference rules (the relation definition)
5

. Using inference rules

— Derivation trees as interpreters
— Or as proofs about expressions

6. Metatheory: Proofs about the semantics

e [hen semantics for statements

-

Dan Grossman CSE505 Fall 2008, Lecture 3

/Informal Idea \

Given e, what ¢ does it evaluate to?

It depends on the values of variables (of course).

Use a heap H to encode a total function from variables to constants.

e Could use partial functions, but then 3 H and e for which there is

no c.
We'll define a relation over triples of H, e, and c.

e Will turn out to be function if we view H and e as inputs and c

as output.

e With our metalanguage, easier to define a relation and then prove

its a function (if it is).

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 5

c f H=H',x—c
H(z)=¢ H'(z) f H=H',y+— ¢
0O if H=-.

\
Last case avoids “errors” (makes function total)

“What heap to use” will arise in the statement semantics

e For expression evaluation, “we are given an H"

-

Dan Grossman CSE505 Fall 2008, Lecture 3

ﬂl’he judgment \

We will write:

H:;el c

to mean, “e evaluates to c under heap H".
It is just a relation on triples of the form (H, e, c).

We just made up metasyntax H ; e |} ¢ to follow PL convention and
to distinguish it from other relations.

We can write: .,x +— 3 ; x + y | 3, which will turn out to be true
(this triple will be in the relation we define).

Or: .,z — 3 ; x4+ y { 6, which will turn out to be false
(this triple will not be in the relation we define).

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 7

/Inference rules \

ADD
H;e | H ; ez | c2

H;clc H ;x| H(x) H ;e +ez | citee

CONST VAR

MULT
H;e | c H ; es | c2

H ;e xeq || c1*eo

Bottom: conclusion
Top: hypotheses
By definition, if all hypotheses hold, then the conclusion holds.

Each rule is a schema you “instantiate consistently”.

e So rules "work” “for all" H, ¢, ey, etc.

\\o But “each” e has to be the “same” expression. /

Dan Grossman CSE505 Fall 2008, Lecture 3 8

/Instantiating rules

Example instantiation:

Wwy—433+y 7 wy—453545
Sy 4538+y)+5 012

Instantiates:
H;e | c H ;es | c2

H ;ei +ez ci1+tca
with H=+y+—4,e1=8+y),c1=7€2=5c2=>5

-

Dan Grossman CSE505 Fall 2008, Lecture 3

/Derivations \

A (complete) derivation is a tree of instantiations with axioms at the

leaves.

Example:

wy—435;31 3 wy—4 5y 4
wy—43;34+y47 wy—4 350 5
wy—4353+y)+50 12

So H ; e | c if there exists a derivation with H ; e {} c at the root.

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 10

/Back to relations \

So what relation do our inference rules define?

e Start with empty relation (no triples) Ry

o Let R; be R;_7 union all H ; e |} ¢ such that we can instantiate
some inference rule to have conlusion H ; e |} ¢ and all
hypotheses in R;_ 1.

— So R; is all triples at the bottom of height-7 complete
derivations for 3 < 1.
e R is the relation we defined

— All triples at the bottom of complete derivations.

For the math folks: Roo is the smallest relation closed under the
inference rules.

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 11

/VVhat are these things? \

We can view the inference rules as defining an interpreter.

e Complete derivation shows recursive calls to the “evaluate
expression” function.

— Recursive calls from conclusion to hypotheses.

— Syntax-directed means the interpreter need not “search”.
e See OCaml code in homework 1.
Or we can view the inference rules as defining a proof system.

e Complete derivation establishes facts from other facts starting
with axioms.

— Facts established from hypotheses to conclusions.

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 12

/Some theorems \

e Progress: For all H and e, there exists a ¢ such that H ; e |} c.

e Determinacy: For all H and e, there is at most one ¢ such that
H el c

We rigged it that way...

what would division, undefined-variables, or gettime() do?

Note: Our semantics is syntax-directed.

Proofs are by induction on the the structure (i.e., height) of the
expression e.

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 13

/On to statements

A statement doesn't produce a constant.

It produces a new, possibly-different heap.
e If it terminates.

We could define Hy ; s || Ho
e Would be a partial function from H; and s to Hs.
e Works fine; could be a homework problem.

Instead we'll define a “small-step” semantics and then “iterate” to

“run the program”.

H1;81—>H2;82

-

Dan Grossman CSE505 Fall 2008, Lecture 3 14

/Statement semantics \

H, ; s — Hs ; 82

ASSIGN
H;elc

H;x:=e— H,x+— c; skip

| SEQ2
SE
@ H;sy — H' ;s
H ; skip;s — H ; s H ; 51582 — H' 5 875 82
IF1 IF2
H;;el c c>0 H;;el c c<0
H ;ifesy so— H; sq H ;if e s; so — H ; so

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 15

/Statement semantics cont'd

What about while e s (do s and loop if e > 0)7

WHILE

H ; while e s — H ; if e (s;while e s) skip

Many other equivalent definitions possible

-

Dan Grossman CSE505 Fall 2008, Lecture 3

16

/Program semantics \

We defined H ; s — H’ ; s’, but what does “s" mean/do?

Our machine iterates: Hy;81—Ho3;50— H3sss . . .,

with each step justified by a complete derivation using our
single-step statement semantics

Let Hy ; s1 —* Hy ; s2 mean “becomes after 0 or more steps” and
pick a special “answer” variable ans

The program s produces c if - ; s —* H ; skip and H(ans) = ¢

Does every s produce a c?

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 17

/Example program execution

~

x:= 3;(y:= 1L;whilex (y:=y*x;x :=x—1))

derivation. Let s = (y := y * x3x := x—1).

s x := 335y := 1;while x s

— +,x +— 3; skip;y := 1;while x s

— o, x+ 35y := 1;while x s

—? . x+— 3,y +— 1; while x s

— o x+— 3,y — 1;if x (s;while x s) skip

— x> 3, y— L y:i=y*xx;x:=x — 1;while x s

-

Let's write some of the state sequence. You can justify each step with a full

Dan Grossman CSE505 Fall 2008, Lecture 3

18

/Continued... \

—? L x+—3,y— 1,y+— 3;x:=x—1;whilex s
_>2 .’X|—>3,y|—>1,yl—>3,Xl—>2;WhileX8
— ...,y — 3,x — 2;if x (s;while x s) skip
— ...,y — 6,x — 05 skip

Dan Grossman CSE505 Fall 2008, Lecture 3 19

/VVhere we are \

We have defined H ;e || cand H ; s — H’ ; s’ and extended the
latter to give s a meaning.

The way we did expressions is “large-step” or “natural”.
The way we did statements is “small-step” .

So now you have seen both.

Large-step does not distinguish errors and divergence.

e But we defined IMP to have no errors

e And expressions never diverge

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 20

/Establishing Properties \

We can prove a property of a terminating program by “running’ it.

Example: Our last program terminates with x holding O.

We can prove a program diverges, i.e., for all H and n,
-3 8 —™ H ; skip cannot be derived.

Example: while 1 skip

By induction on n with stronger induction hypothesis: If we can derive
.38 —™ H ; s’ then s’ is while 1 skip or
if 1 (skip; while 1 skip) skip or skip; while 1 skip.

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 21

/I\/Iore General Proofs \

We can prove properties of executing all programs (satisfying another
property)

Example: If H and s have no negative constants and

H ; s —* H' ; s’ then H’ and s’ have no negative constants.

Example: If for all H, we know s and s3 terminate, then for all H,
we know H;(s1;s2) terminates.

- /

Dan Grossman CSE505 Fall 2008, Lecture 3 22

