# CSE 505: <br> Concepts of Programming Languages 

Dan Grossman

Fall 2008
Lecture 5- Little Trusted Languages; Equivalence

## Where are we

Today is IMP's last lecture (hooray!). Done:

- Abstract Syntax
- Operational Semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- "Pseudo-Denotational" Semantics

Today:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next time: Local variables, lambda-calculus

## Packet Filters

Almost everything I know about packet filters:

- Some bits come in off the wire
- Some application(s) want the "packet" and some do not (e.g., port number)
- For safety, only the $O / S$ can access the wire
- For extensibility, only an application can accept/reject a packet

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

## What we need

Now the O/S writer is defining the packet-filter language!
Properties we wish of (untrusted) filters:

1. Don't corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3 )
Should we make up a language and "hope" it has these properties?

## Language-based approaches

1. Interpret a language.

+ clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into $C /$ assembly.

+ clean denotational semantics, + employ existing optimizers, upfront cost, - unusual interface

3. Require a conservative subset of $C /$ assembly.

+ normal interface, - too conservative w/o help
IMP has taught us about (1) and (2) - we'll get to (3)


## A General Pattern

Packet filters move the code to the data rather than data to the code.
General reasons: performance, security, other?
Other examples:

- Query languages
- Active networks


## Equivalence motivation

- Program equivalence (change program): code optimizer, code maintainer
- Semantics equivalence (change language): interpreter optimizer, language designer (prove properties for equivalent semantics with easier proof)

Warning: Proofs are easy with the right semantics and lemmas
Note: Small-step often has harder proofs but models more interesting things

## What is equivalence

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything
- not transitive
- Total I/O (same termination behavior, same ans)
- Total heap equivalence (at termination, all (almost all) variables have the same value)
- Equivalence plus complexity bounds
- Is $O\left(2^{n^{n}}\right)$ really equivalent to $O(n)$ ?
- Syntactic equivalence (perhaps with renaming)
- too strict to be interesting


## Program Example: Strength Reduction

Motivation: Strength reduction a common compiler optimization due to architecture issues.

Theorem: $\boldsymbol{H} ; \boldsymbol{e} * \mathbf{2} \Downarrow \boldsymbol{c}$ if and only if $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e} \Downarrow \boldsymbol{c}$.
Proof sketch: Just need "inversion of derivation" and math (hmm, no induction).

## Program Example: Nested Strength Reduction

Theorem: If $e^{\prime}$ has a subexpression of the form $e * 2$, then $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}^{\prime}$ if and only if $\boldsymbol{H} ; \boldsymbol{e}^{\prime \prime} \Downarrow \boldsymbol{c}^{\prime}$ where $\boldsymbol{e}^{\prime \prime}$ is $\boldsymbol{e}^{\prime}$ with $e * \mathbf{2}$ replaced with $e+e$.

First some useful metanotation:

$$
C::=[\cdot]|C+e| e+C|C * e| e * C
$$

$C[e]$ is " $C$ with $e$ in the hole".
So: If ( $e_{1}=C[e * 2]$ and $\left.e_{2}=C[e+e]\right)$,
then $\left(\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}} \Downarrow \boldsymbol{c}^{\prime}\right.$ if and only if $\left.\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{2}} \Downarrow \boldsymbol{c}^{\prime}\right)$.
Proof sketch: By induction on structure ("syntax height") of $\boldsymbol{C}$.

## Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,
(a) For all $\boldsymbol{n}$, if $\boldsymbol{H} ; \boldsymbol{s}_{\mathbf{1}} ;\left(s_{\mathbf{2}} ; \boldsymbol{s}_{\mathbf{3}}\right) \rightarrow^{\boldsymbol{n}} \boldsymbol{H}^{\prime}$; skip then there exist $\boldsymbol{H}^{\prime \prime}$ and $\boldsymbol{n}^{\prime}$ such that $\boldsymbol{H} ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{\boldsymbol{n}^{\prime}} \boldsymbol{H}^{\prime \prime}$; skip and $H^{\prime \prime}(a n s)=H^{\prime}(a n s)$.
(b) If for all $\boldsymbol{n}$ there exist $\boldsymbol{H}^{\prime}$ and $\boldsymbol{s}^{\prime}$ such that $\boldsymbol{H} ; s_{1} ;\left(s_{2} ; s_{3}\right) \rightarrow^{n} \boldsymbol{H}^{\prime} ; s^{\prime}$, then for all $\boldsymbol{n}$ there exist $\boldsymbol{H}^{\prime \prime}$ and $s^{\prime \prime}$ such that $\boldsymbol{H} ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n} \boldsymbol{H}^{\prime \prime} ; s^{\prime \prime}$.
(Proof needs a much stronger induction hypothesis.)
One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.

## Language Equivalence Example

IMP w/o multiply:

| CONST | VAR | ADD <br> $\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}$ |
| :--- | :--- | :--- |
| $\boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$ |  |  |$\quad \frac{\boldsymbol{H} ; \boldsymbol{e}_{1} \Downarrow \boldsymbol{c}_{1} \quad \boldsymbol{H} ; \boldsymbol{e}_{2} \Downarrow \boldsymbol{c}_{2}}{\boldsymbol{H} ; \boldsymbol{e}_{1}+e_{2} \Downarrow \boldsymbol{c}_{1}+\boldsymbol{c}_{2}}$

IMP w/o multiply small-step:
SVAR SADD
$H ; \boldsymbol{x} \rightarrow \boldsymbol{H}(\boldsymbol{x})$
SLEFT

$$
\frac{H ; e_{1} \rightarrow e_{1}^{\prime}}{H ; e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}}
$$

ADD

$$
\frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}}
$$

SADD

$$
H ; c_{1}+c_{2} \rightarrow c_{1}+c_{2}
$$

SRIGHT

$$
\frac{H ; e_{2} \rightarrow e_{2}^{\prime}}{H ; e_{1}+e_{2} \rightarrow e_{1}+e_{2}^{\prime}}
$$

Theorem: Semantics are equivalent, i.e., $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ if and only if $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} \boldsymbol{c}$.

Proof: We prove the two directions separately.

## Proof, part 1:

First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow c$; show $\exists n . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} c$.
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} e^{\prime}$, then $\boldsymbol{H} ; e_{1}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e}_{\mathbf{2}} \rightarrow^{n} e^{\prime}+e_{2}$. (Proof uses Sleft and SRIGHT.)
Given the lemma, prove by induction on height $\boldsymbol{h}$ of derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ :

- $h=1$ : Derivation is via Const (so $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{0} \boldsymbol{c}$ ) or var (so $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{1} \boldsymbol{c}$ ).
- $h>1$ : Derivation ends with ADD, so $e$ has the form $e_{1}+e_{2}$,
$H ; e_{1} \Downarrow c_{1}, H ; e_{2} \Downarrow c_{2}$, and $c$ is $c_{1}+c_{2}$.
By induction $\exists n_{1}, n_{2} . H ; e_{1} \rightarrow^{n_{1}} c_{1}$ and $\boldsymbol{H} ; \boldsymbol{e}_{2} \rightarrow^{n_{2}} c_{2}$.
So by our lemma $\boldsymbol{H} ; \boldsymbol{e}_{1}+e_{2} \rightarrow^{n_{1}} c_{1}+e_{2}$ and
$H ; c_{1}+e_{2} \rightarrow^{n_{2}} c_{1}+c_{2}$.
So SADD lets us derive $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}}+\boldsymbol{e}_{\mathbf{2}} \rightarrow^{n_{1}+n_{2}+1} c$.


## Proof, part 2:

Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$; show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$. By induction on $\boldsymbol{n}$ :

- $\boldsymbol{n}=\mathbf{0}: \boldsymbol{e}$ is $\boldsymbol{c}$ and CONST lets us derive $\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}$.
- $n>0$ : $\exists e^{\prime} . H ; e \rightarrow e^{\prime}$ and $H ; e^{\prime} \rightarrow^{n-1} c$.

By induction $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$.
So this lemma suffices: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on height $\boldsymbol{h}$ of derivation of $H ; e \rightarrow e^{\prime}:$
$-h=1$ : Derivation ends with SVAR (so $\boldsymbol{e}^{\prime}=\boldsymbol{c}=\boldsymbol{H}(\boldsymbol{x})$ and VAR gives $\boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$ ) or with SADD (so $\boldsymbol{e}$ is some $\boldsymbol{c}_{\boldsymbol{1}}+\boldsymbol{c}_{\boldsymbol{2}}$ and $\boldsymbol{e}^{\prime}=\boldsymbol{c}=\boldsymbol{c}_{1}+\boldsymbol{c}_{2}$ and ADD gives $\left.\boldsymbol{H} ; \boldsymbol{c}_{1}+\boldsymbol{c}_{2} \Downarrow \boldsymbol{c}_{1}+\boldsymbol{c}_{2}\right)$.

- $h>1$ : Derivation ends with SLEFT or SRIGHT ...


## Proof, part 2 continued:

If $e$ has the form $e_{1}+e_{2}$ and $e^{\prime}$ has the form $e_{1}^{\prime}+e_{2}$, then the assumed derivations end like this:

$$
\frac{H ; e_{1} \rightarrow e_{1}^{\prime}}{H ; e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} \quad \frac{H ; e_{1}^{\prime} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}^{\prime}+e_{2} \Downarrow c_{1}+c_{2}}
$$

Using $H ; e_{1} \rightarrow e_{1}^{\prime}, H ; e_{1}^{\prime} \Downarrow c_{1}$, and the induction hypothesis, $\boldsymbol{H} ; \boldsymbol{e}_{1} \Downarrow \boldsymbol{c}_{1}$. Using this fact, $\boldsymbol{H} ; \boldsymbol{e}_{2} \Downarrow \boldsymbol{c}_{2}$, and ADD, we can derive $H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}$.
(If $e$ has the form $e_{1}+e_{2}$ and $e^{\prime}$ has the form $e_{1}+e_{2}^{\prime}$, the argument is analogous to the previous case (prove it!).)

## A nice payoff

Theorem: The small-step semantics is deterministic, i.e., if
$\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} \boldsymbol{c}_{1}$ and $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} \boldsymbol{c}_{2}$, then $\boldsymbol{c}_{1}=\boldsymbol{c}_{2}$.
Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof.

- Given $(((1+2)+(3+4))+(5+6))+(7+8)$ there are many execution sequences, which all produce 36 but with different intermediate expressions.

Proof:

- Large-step evaluation is deterministic (easy proof by induction).
- Small-step and and large-step are equivalent (just proved that).
- So small-step is deterministic.
- (Convince yourself a deterministic and a nondeterministic semantics can't be equivalent with our definition of equivalence.)


## Conclusions

- Equivalence is a subtle concept.
- Proofs "seem obvious" only when the definitions are right.
- Some other language-equivalence claims:

Replace while rule with
$\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { while } e s \rightarrow H ; \text { skip }} \quad \frac{H ; e \Downarrow c \quad c>0}{H ; \text { while } e s \rightarrow H ; s ; \text { while } e s}$

Theorem: Languages are equivalent. (True)
Change syntax of heap and replace ASSIGN and VAR rules with

$$
\overline{H ; x:=e \rightarrow H, x \mapsto e ; \text { skip }} \quad \frac{H ; H(x) \Downarrow c}{H ; x \Downarrow c}
$$

Theorem: Languages are equivalent. (False)

