
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008

Lecture 7— Substitution; Simply Typed Lambda Calculus

Dan Grossman CSE505 Fall 2008, Lecture 7 1

'

&

$

%

Review
λ-calculus syntax:

e ::= λx. e | x | e e

v ::= λx. e

Call-By-Value Left-Right Small-Step Operational Semantics:

e → e′

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

Call-By-Name Small-Step Operational Semantics:

e → e′

(λx. e) e′ → e[e′/x]

e1 → e′
1

e1 e2 → e′
1 e2

Call-By-Need in theory “optimizes” Call-By-Name

For most of course, assume CBV Left-Right

Dan Grossman CSE505 Fall 2008, Lecture 7 2

'

&

$

%

Formalism not done yet

Need to define substitution—shockingly subtle

Informally: e[e′/x] “ replaces occurrences of x in e with e′ ”

e1[e2/x] = e3

Attempt 1:

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′
1

(λy. e1)[e/x] = λy. e′
1

e1[e/x] = e′
1 e2[e/x] = e′

2

(e1 e2)[e/x] = e′
1 e′

2

Dan Grossman CSE505 Fall 2008, Lecture 7 3

'

&

$

%

Getting substitution right

Attempt 2:

e1[e/x] = e′
1 y 6= x

(λy. e1)[e/x] = λy. e′
1 (λx. e1)[e/x] = λx. e1

What if e is y or λz. y or, in general y is free in e? This mistake is

called capture.

It doesn’t happen under CBV/CBN if our source program has no free

variables.

Can happen under full reduction.

Dan Grossman CSE505 Fall 2008, Lecture 7 4

'

&

$

%

Another Try

Attempt 3:

First define the “free variables of an expression” FV (e):

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)

FV (λx. e) = FV (e) − {x}

Now define substitution with these rules for functions:

e1[e/x]=e′
1 y 6=x y 6∈FV (e)

(λy. e1)[e/x] = λy. e′
1 (λx. e1)[e/x] = λx. e1

But a partial definition (as stands, could get stuck because there is no

substitution).

Dan Grossman CSE505 Fall 2008, Lecture 7 5

'

&

$

%

Implicit Renaming

• A partial definition because of the syntactic accident that y was

used as a binder (should not be visible – local names shouldn’t

matter).

• So we allow implicit systematic renaming (of a binding and all its

bound occurrences).

• So the left rule can always apply (can drop the right rule).

• In general, we never distinguish terms that differ only in the

names of variables. (A key language-design principle!)

• So now even “different syntax trees” can be the “same term”.

Dan Grossman CSE505 Fall 2008, Lecture 7 6

'

&

$

%

Summary and some jargon

• If everything is a function, every step involves an application:

(λx. e)e′ → e[e′/x] (called β-reduction)

• Substitution avoids capture via implicit renaming (called

α-conversion)

• With full reduction, (λx. e x) → e makes sense if x 6∈ FV (e)
(called η-reduction), for CBV it can change termination behavior

– But advanced Camlers scoff at fun x -> f x, since that’s

equivalent to f.

Most languages use CBV application, some use call-by-need.

Our Turing-complete language models functions and encodes

everything else.

Dan Grossman CSE505 Fall 2008, Lecture 7 7

'

&

$

%

Why types?

Our untyped λ-calculus is universal, like assembly language. But we

might want to allow fewer programs

1. Catch “simple” mistakes (e.g., “if” applied to “mkpair”) early

(but a decidable type system must be conservative)

2. (Safety) Prevent getting stuck (e.g., x e) (but for pure

λ-calculus, just need to prevent free variables)

3. Enforce encapsulation (an abstract type)

• clients can’t break invariants

• clients can’t assume an implementation

• requires safety

Continued...

Dan Grossman CSE505 Fall 2008, Lecture 7 8

'

&

$

%

Why types? continued

4. Assuming well-typedness allows faster implementations

• smaller interfaces enable optimizations

• don’t have to check for being stuck

• orthogonal to safety (e.g., C)

5. Syntactic overloading (not too interesting)

• “late binding” (via run-time types) very interesting

6. Detect other errors via extensions (often “effect systems”)

• dangling pointers, data races, uncaught exceptions, tainted

data, ... analysis, ...

(Deep similarities in analyses suggest type systems a, “good way

to think-about/define/prove what you’re checking”)

We’ll really focus on (1), (2), and (3) though (plus (6) if have time???)

Dan Grossman CSE505 Fall 2008, Lecture 7 9

'

&

$

%

What is a type system?

Er, uh, you know it when you see it. Some clues:

• A decidable (?) judgment for classifying programs (e.g., e1 + e2

has type int if e1 and e2 have type int else it has no type)

• Fairly syntax directed (non-example??: e terminates within 100

steps)

• A sound (?) abstraction of computation (e.g., if e1 + e2 has type

int, then evaluation produces an int (with caveats!))

This is a CS-centric, PL-centric view. Foundational type theory has

more rigorous answers (type systems are proof systems for logics)

Dan Grossman CSE505 Fall 2008, Lecture 7 10

'

&

$

%

Plan for a couple weeks

• Simply typed λ calculus (STλC)

• (Syntactic) Type Soundness (i.e., safety)

• Extensions (pairs, sums, lists, recursion)

Then a break from types for abstract machines, continuations, midterm

• Subtyping

• Polymorphic types (generics)

• Recursive types

• Abstract types

Homework: Adding back mutation

Omitted: Type inference

Dan Grossman CSE505 Fall 2008, Lecture 7 11

'

&

$

%

Adding constants

Let’s add integers to our CBV small-step λ-calculus:

e ::= λx. e | x | e e | c

v ::= λx. e | c

We could add + and other primitives or just parameterize “programs”

by them: λplus. e. (Like Pervasives in Caml.)

e → e′

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

What are the stuck states? Why don’t we want them?

Dan Grossman CSE505 Fall 2008, Lecture 7 12

'

&

$

%

Wrong Attempt

τ ::= int | fn

` e : τ

` λx. e : fn ` c : int

` e1 : fn ` e2 : int

` e1 e2 : int

1. NO: can get stuck, (λx. y) 3

2. NO: too restrictive, (λx. x 3) (λy. y)

3. NO: types not preserved, (λx. λy. y) 3

Dan Grossman CSE505 Fall 2008, Lecture 7 13

'

&

$

%

Getting it right

1. Need to type-check function bodies, which have free variables

2. Need to distinguish functions according to argument and result

types

For (1): Γ ::= · | Γ, x : τ and Γ ` e : τ .

For (2): τ ::= int | τ → τ (an infinite number of types)

E.g.s: int → int, (int → int) → int, int → (int → int).

Concrete syntax note: → is right-associative, so

τ1 → τ2 → τ3 is τ1 → (τ2 → τ3).

Dan Grossman CSE505 Fall 2008, Lecture 7 14

'

&

$

%

STλC Type System

τ ::= int | τ → τ

Γ ::= · | Γ, x:τ

Γ ` e : τ

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

The function-introduction rule is the interesting one...

Dan Grossman CSE505 Fall 2008, Lecture 7 15

'

&

$

%

A closer look

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

1. Where did τ1 come from?

• Our rule “inferred” or “guessed” it.

• To be syntax directed, change λx. e to λx : τ . e and use

that τ .

2. Can think of “adding x” as shadowing or requiring x 6∈ Dom(Γ).
Systematic renaming (α-conversion) ensures x 6∈ Dom(Γ) is not

a problem.

3. Still “too restrictive”. E.g.: (λx. (x (λy. y)) (x 3)) λz. z does

not get stuck, but doesn’t type-check

• ((λz. z)(λy. y))((λz. z) 3) type-checks though)

Dan Grossman CSE505 Fall 2008, Lecture 7 16

'

&

$

%

Always restrictive

“gets stuck” undecidable: If e has no constants or free variables, then

e (3 4) (or e x) gets stuck iff e terminates.

Old conclusion: “Strong types for weak minds” – need back door

(unchecked cast)

Modern conclusion: Make “false positives” (reject safe program) rare

and “false negatives” (allow unsafe program) impossible. Be

Turing-complete and convenient even when having to “work around” a

false positive.

Justification: false negatives too expensive, have resources to use

fancy type systems to make “rare” a reality.

Dan Grossman CSE505 Fall 2008, Lecture 7 17

'

&

$

%

Evaluating STλC

1. Does STλC prevent false negatives? Yes.

2. Does STλC make false positives rare? No. (A starting point)

Big note: “Getting stuck” depends on the semantics. If we add

c v → 0 and x v → 42 we “don’t need” a type system. Or we could

say c v and x v “are values”.

That is, the language dictator deemed c e and free variables bad (not

“answers” and not “reducible”). Our type system is a conservative

checker that they won’t occur.

Dan Grossman CSE505 Fall 2008, Lecture 7 18

'

&

$

%

Type Soundness

We will take a syntactic (operational) approach to soundness/safety

(the popular way since the early 90s). . .

Thm (Type Safety): If · ` e : τ then e diverges or e →n v for an n

and v such that · ` v : τ .

• That is, if · ` e : τ and e →n e′, then e′ is not stuck (it might

be a value).

Proof: By induction on n using the next two lemmas.

Lemma (Preservation): If · ` e : τ and e → e′, then · ` e′ : τ .

Lemma (Progress): If · ` e : τ , then e is a value or there exists an e′

such that e → e′.

Dan Grossman CSE505 Fall 2008, Lecture 7 19

