Type Safety for $\text{ST}\lambda\text{C}$ with Constants CSE 505, Fall 2008

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

$$
e ::= c | \lambda x. e | x | e e
$$

\n
$$
v ::= c | \lambda x. e
$$

\n
$$
\tau ::= \text{int} | \tau \rightarrow \tau
$$

\n
$$
\Gamma ::= \cdot | \Gamma, x : \tau
$$

Evaluation Rules

 $e \rightarrow e'$

E-APPLY
\n
$$
\frac{E-APP1}{(\lambda x. e) v \rightarrow e[v/x]}
$$
\n
$$
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2}
$$
\n
$$
\frac{E-APP2}{v e_2 \rightarrow v e'_2}
$$

Typing Rules

 $\boxed{\Gamma \vdash e : \tau}$

T-CONST
\nT-VAR
\n
$$
\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \qquad x \notin \text{Dom}(\Gamma)}{\Gamma \vdash c : \text{int}}
$$
\n
$$
\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \qquad x \notin \text{Dom}(\Gamma)}{\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2}
$$
\n
$$
\frac{\Gamma - \text{APP}}{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}
$$
\n
$$
\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau_1}
$$

Type Soundness

Theorem (Type Soundness). If $\cdot \vdash e : \tau$ and $e \rightarrow^* e'$, then either e' is a value or there exists an e'' such that $e' \rightarrow e''$.

Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach e' from e establishes that $\cdot \vdash e' : \tau$. Then the Progress Theorem ensures e' is a value or can step to some e'' .

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If $\cdot \vdash v : \tau$, then

i If τ is int, then v is a constant, i.e., some c.

ii If τ is $\tau_1 \to \tau_2$, then v is a lambda, i.e., λx . e for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, then the only rule which lets us give a value this type is T-CONST.

ii If τ is $\tau_1 \rightarrow \tau_2$, then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e' such that $e \rightarrow e'$.

Progress. The proof is by induction on (the height of) the derivation of $\cdot \vdash e : \tau$, proceeding by cases on the bottommost rule used in the derivation.

T-CONST e is a constant, which is a value, so we are done.

T-VAR Impossible, as Γ is \cdot .

T-FUN e is $\lambda x. e'$, which is a value, so we are done.

T-App e is $e_1 e_2$.

By inversion, $\cdot \vdash e_1 : \tau_2 \rightarrow \tau_1$ and $\cdot \vdash e_2 : \tau_2$.

If e_1 is not a value, then $\cdot \vdash e_1 : \tau_2 \to \tau_1$ and the induction hypothesis ensures $e_1 \to e'_1$ for some e'_1 . Therefore, by E-App1, $e_1 e_2 \rightarrow e'_1 e_2$.

Else e_1 is a value. If e_2 is not a value, then $\cdot \vdash e_2 : \tau_2$ and our induction hypothesis ensures $e_2 \rightarrow e'_2$ for some e'_2 . Therefore, by E-App2, $e_1 e_2 \rightarrow e_1 e'_2$.

Else e_1 and e_2 are values. Then $\cdot \vdash e_1 : \tau_2 \to \tau_1$ and the Canonical Forms Lemma ensures e_1 is some λx . e'. And λx . e' $e_2 \to e'[e_2/x]$ by E-Apply, so e_1 e_2 can take a step.

 \Box

We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where Γ is \cdot , but proving the Substitution Lemma itself requires the stronger induction hypothesis using any Γ.

Lemma (Substitution). If $\Gamma, x : \tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$.

To prove this lemma, we will need the following two lemmas, which I will not bother to prove.

Lemma (Weakening). If $\Gamma \vdash e : \tau$, then $\Gamma, x : \tau' \vdash e : \tau$.

Weakening. By induction on the derivation of $\Gamma \vdash e : \tau$.

Lemma (Exchange). If Γ , $x:\tau_1, y:\tau_2 \vdash e : \tau$ and $y \neq x$, then Γ , $y:\tau_2, x:\tau_1 \vdash e : \tau$.

Exchange. By induction on the derivation of $\Gamma \vdash e : \tau$.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of $\Gamma, x : \tau' \vdash e : \tau$. There are four cases. In all cases, we know $\Gamma \vdash e' : \tau'$ by assumption.

T-CONST e is c, so $c[e'/x]$ is c. By T-CONST, $\Gamma \vdash c$: int.

T-VAR e is y and $\Gamma, x:\tau' \vdash y : \tau$.

If $y \neq x$, then $y[e'/x]$ is y. By inversion on the typing rule, we know that $(\Gamma, x:\tau')(y) =$ τ. Since $y \neq x$, we know that $\Gamma(y) = \tau$. So by T-VAR, $\Gamma \vdash y : \tau$.

If $y = x$, then $y[e'/x]$ is $e'. \Gamma, x:\tau' \vdash x : \tau$, so by inversion, $(\Gamma, x:\tau')(x) = \tau$, so $\tau = \tau'.$ We know $\Gamma \vdash e' : \tau'$, which is exactly what we need.

T-APP e is $e_1 e_2$, so $e[x/e']$ is $(e_1[x/e']) (e_2[x/e'])$.

We know $\Gamma, x:\tau' \vdash e_1 \ e_2 : \tau_1$, so, by inversion on the typing rule, we know $\Gamma, x:\tau' \vdash e_1 : \tau_2 \to \tau_1 \text{ and } \Gamma, x:\tau' \vdash e_2 : \tau_2 \text{ for some } \tau_2.$ Therefore, by induction, $\Gamma \vdash e_1[e'/x] : \tau_2 \to \tau_1$ and $\Gamma \vdash e_2[e'/x] : \tau_2$. Given these, T-App lets us derive $\Gamma \vdash (e_1[x/e']) (e_2[x/e']) : \tau_1$. So by the definition of substitution $\Gamma \vdash (e_1 \ e_2)[e'/x] : \tau_1$.

T-FUN e is λy . e_b , so $e[x/e']$ is λy . $(e_b[x/e'])$.

We know $\Gamma, x:\tau' \vdash \lambda y. e_b : \tau_1 \rightarrow \tau_2$, so, by inversion on the typing rule, we know $\Gamma, x:\tau', y:\tau_1 \vdash e_b : \tau_2.$

By Exchange, we know that $\Gamma, y:\tau_1, x:\tau' \vdash e_b : \tau_2$.

By Weakening, we know that $\Gamma, y:\tau_1 \vdash e': \tau'.$

 \Box

 \Box

We have rearranged the two typing judgments so that our induction hypothesis applies (using $\Gamma, y:\tau_1$ for the typing context called Γ in the statement of the lemma), so, by induction, $\Gamma, y:\tau_1 \vdash e_b[e'/x]: \tau_2$.

Given this, T-FUN lets us derive $\Gamma \vdash \lambda y$. $e_b[e'/x] : \tau_1 \to \tau_2$. So by the definition of substitution, $\Gamma \vdash (\lambda y. e_b)[e'/x] : \tau_1 \to \tau_2$.

Theorem (Preservation). If
$$
\cdot \vdash e : \tau
$$
 and $e \rightarrow e'$, then $\cdot \vdash e : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases.

- T-CONST e is c. This case is impossible, as there is no e' such that $c \to e'$.
	- T-VAR e is x . This case is impossible, as x cannot be typechecked under the empty context.
	- T-FUN e is λx . e_b . This case is impossible, as there is no e' such that λx . $e_b \rightarrow e'$.
	- T-APP e is e_1 e_2 , so $\cdot \vdash e_1$ $e_2 : \tau$.

By inversion on the typing rule, $\cdot \vdash e_1 : \tau_2 \to \tau$ and $\cdot \vdash e_2 : \tau_2$ for some τ_2 .

There are three possible rules for deriving $e_1 e_2 \rightarrow e'$.

- E-APP1 Then $e' = e'_1 e_2$ and $e_1 \rightarrow e'_1$. By $\cdot \vdash e_1 : \tau_2 \to \tau$, $e_1 \to e'_1$, and induction, $\cdot \vdash e'_1 : \tau_2 \to \tau$. Using this and $\cdot \vdash e_2 : \tau_2$, T-App lets us derive $\cdot \vdash e'_1 e_2 : \tau_1$.
- E-APP2 Then $e' = e_1 \cdot e_2'$ and $e_2 \rightarrow e_2'$. By $\cdot \vdash e_2 : \tau_2, e_2 \rightarrow e'_2$, and induction $\cdot \vdash e'_2 : \tau_2$. Using this and $\cdot \vdash e_1 : \tau_2 \to \tau$, T-App lets us derive $\cdot \vdash e_1 \ e'_2 : \tau$.
- E-APPLY Then e_1 is λx . e_b for some x and e_b , and $e' = e_b[e_2/x]$. By inversion of the typing of $\cdot \vdash e_1 : \tau_2 \to \tau$, we have $\cdot, x : \tau_2 \vdash e_b : \tau$. This and $\cdot \vdash e_2 : \tau_2$ lets us use the Substitution Lemma to conclude $\cdot \vdash e_b[e_2/x] : \tau$.

 \Box

 \Box