
Type Safety for STλC with Constants
CSE 505, Fall 2008

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

e ::= c | λx. e | x | e e
v ::= c | λx. e
τ ::= int | τ → τ
Γ ::= · | Γ, x:τ

Evaluation Rules

e → e′

E-Apply

(λx. e) v → e[v/x]

E-App1
e1 → e′

1

e1 e2 → e′
1 e2

E-App2
e2 → e′

2

v e2 → v e′
2

Typing Rules

Γ ` e : τ

T-Const

Γ ` c : int

T-Var

Γ ` x : Γ(x)

T-Fun
Γ, x : τ1 ` e : τ2 x 6∈ Dom(Γ)

Γ ` λx. e : τ1 → τ2

T-App
Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

1

Type Soundness

Theorem (Type Soundness). If · ` e : τ and e →∗ e′, then either e′ is a value or there
exists an e′′ such that e′ → e′′.

Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation
Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on
the number of steps taken to reach e′ from e establishes that · ` e′ : τ . Then the Progress
Theorem ensures e′ is a value or can step to some e′′.

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If · ` v : τ , then

i If τ is int, then v is a constant, i.e., some c.

ii If τ is τ1 → τ2, then v is a lambda, i.e., λx. e for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, then the only rule which lets us give a value this type is T-Const.

ii If τ is τ1 → τ2, then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If · ` e : τ , then either e is a value or there exists some e′ such that
e → e′.

Progress. The proof is by induction on (the height of) the derivation of · ` e : τ , proceeding
by cases on the bottommost rule used in the derivation.

T-Const e is a constant, which is a value, so we are done.

T-Var Impossible, as Γ is ·.

T-Fun e is λx. e′, which is a value, so we are done.

T-App e is e1 e2.

By inversion, · ` e1 : τ2 → τ1 and · ` e2 : τ2.

If e1 is not a value, then · ` e1 : τ2 → τ1 and the induction hypothesis ensures e1 → e′
1

for some e′
1. Therefore, by E-App1, e1 e2 → e′

1 e2.

Else e1 is a value. If e2 is not a value, then · ` e2 : τ2 and our induction hypothesis
ensures e2 → e′

2 for some e′
2. Therefore, by E-App2, e1 e2 → e1 e′

2.

Else e1 and e2 are values. Then · ` e1 : τ2 → τ1 and the Canonical Forms Lemma
ensures e1 is some λx. e′. And λx. e′ e2 → e′[e2/x] by E-Apply, so e1 e2 can take a
step.

2

We will need the following lemma for our proof of Preservation, below. Actually, in the
proof of Preservation, we need only a Substitution Lemma where Γ is ·, but proving the
Substitution Lemma itself requires the stronger induction hypothesis using any Γ.

Lemma (Substitution). If Γ, x:τ ′ ` e : τ and Γ ` e′ : τ ′, then Γ ` e[e′/x] : τ .

To prove this lemma, we will need the following two lemmas, which I will not bother to
prove.

Lemma (Weakening). If Γ ` e : τ , then Γ, x:τ ′ ` e : τ .

Weakening. By induction on the derivation of Γ ` e : τ .

Lemma (Exchange). If Γ, x:τ1, y:τ2 ` e : τ and y 6= x, then Γ, y:τ2, x:τ1 ` e : τ .

Exchange. By induction on the derivation of Γ ` e : τ .

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of Γ, x:τ ′ ` e : τ . There are four
cases. In all cases, we know Γ ` e′ : τ ′ by assumption.

T-Const e is c, so c[e′/x] is c. By T-Const, Γ ` c : int.

T-Var e is y and Γ, x:τ ′ ` y : τ .

If y 6= x, then y[e′/x] is y. By inversion on the typing rule, we know that (Γ, x:τ ′)(y) =
τ . Since y 6= x, we know that Γ(y) = τ . So by T-Var, Γ ` y : τ .

If y = x, then y[e′/x] is e′. Γ, x:τ ′ ` x : τ , so by inversion, (Γ, x:τ ′)(x) = τ , so τ = τ ′.
We know Γ ` e′ : τ ′, which is exactly what we need.

T-App e is e1 e2, so e[x/e′] is (e1[x/e′]) (e2[x/e′]).

We know Γ, x:τ ′ ` e1 e2 : τ1, so, by inversion on the typing rule, we know
Γ, x:τ ′ ` e1 : τ2 → τ1 and Γ, x:τ ′ ` e2 : τ2 for some τ2.

Therefore, by induction, Γ ` e1[e
′/x] : τ2 → τ1 and Γ ` e2[e

′/x] : τ2.

Given these, T-App lets us derive Γ ` (e1[x/e′]) (e2[x/e′]) : τ1.

So by the definition of substitution Γ ` (e1 e2)[e
′/x] : τ1.

T-Fun e is λy. eb, so e[x/e′] is λy. (eb[x/e′]).

We know Γ, x:τ ′ ` λy. eb : τ1 → τ2, so, by inversion on the typing rule, we know
Γ, x:τ ′, y:τ1 ` eb : τ2.

By Exchange, we know that Γ, y:τ1, x:τ ′ ` eb : τ2.

By Weakening, we know that Γ, y:τ1 ` e′ : τ ′.

3

We have rearranged the two typing judgments so that our induction hypothesis applies
(using Γ, y:τ1 for the typing context called Γ in the statement of the lemma), so, by
induction, Γ, y:τ1 ` eb[e

′/x] : τ2.

Given this, T-Fun lets us derive Γ ` λy. eb[e
′/x] : τ1 → τ2.

So by the definition of substitution, Γ ` (λy. eb)[e
′/x] : τ1 → τ2.

Theorem (Preservation). If · ` e : τ and e → e′, then · ` e : τ .

Preservation. The proof is by induction on the derivation of · ` e : τ . There are four cases.

T-Const e is c. This case is impossible, as there is no e′ such that c → e′.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is λx. eb. This case is impossible, as there is no e′ such that λx. eb → e′.

T-App e is e1 e2, so · ` e1 e2 : τ .

By inversion on the typing rule, · ` e1 : τ2 → τ and · ` e2 : τ2 for some τ2.

There are three possible rules for deriving e1 e2 → e′.

E-App1 Then e′ = e′
1 e2 and e1 → e′

1.

By · ` e1 : τ2 → τ , e1 → e′
1, and induction, · ` e′

1 : τ2 → τ .

Using this and · ` e2 : τ2, T-App lets us derive · ` e′
1 e2 : τ1.

E-App2 Then e′ = e1 e′
2 and e2 → e′

2.

By · ` e2 : τ2, e2 → e′
2, and induction · ` e′

2 : τ2.

Using this and · ` e1 : τ2 → τ , T-App lets us derive · ` e1 e′
2 : τ .

E-Apply Then e1 is λx. eb for some x and eb, and e′ = eb[e2/x].

By inversion of the typing of · ` e1 : τ2 → τ , we have ·, x:τ2 ` eb : τ .

This and · ` e2 : τ2 lets us use the Substitution Lemma to conclude · ` eb[e2/x] : τ .

4

