
CSE 505, Fall 2009, Assignment 2
Due: Friday 30 October 2009, 4:00PM

Last updated: October 13

Ensure you understand the course policies on academic integrity (see the syllabus) and challenge problems.
You need several Caml files in hw2.tar, available on the course website.

This homework considers a small “language” for ML-style pattern matching with some twists. A “program”
is a pattern p and a value v. If p “matches” v, then the result is a list of bindings b. Else there is no result.

Syntax definition:
v ::= c | (v, v) | s(v)
p ::= | x | c | (p, p) | s(p) | ...(p)
b ::= · | (x, v), b

(c ∈ {0, 1, 2, . . .})
(s any nonempty string of English letters)
(x any nonempty string of English letters)

For values, we have constants, pairs, and tagged values. The tag is any string unlike in ML where constructors
must be in preceding type definitions. For patterns, we have wildcard, variables, constants, pairs, tagged
patterns, and the “descendent” pattern ...(p).

Informal semantics:

• Pattern matches every value and produces the empty list of bindings (·).

• Pattern x matches every value and produces the one-element binding list (x, v), · when matched with
v. Note x can be any variable.

• Pattern c matches only the value that is the same constant and produces the empty list of bindings.

• Pattern (p1, p2) matches only pairs of values and only if p1 and p2 match the corresponding components
of the pair. The result is the two binding lists from the nested matches appended together.

• Pattern s(p) matches only a tagged value where the tag is the same (i.e., the same string s) and p
matches the corresponding value. The result is the result of the nested match.

• Pattern ...(p) matches a value v if p matches any descendent of v in the abstract syntax tree, including
v itself. Put another (very useful) way, it matches if p matches v or ...(p) matches a child of v in the
syntax tree. The result is the result of (any) match that leads to “success”.

• Assume a pattern does not have the same variable more than once; you do not need to check for this.

Example: using the concrete syntax for the parser provided to you (note parentheses are necessary, the
pattern and value must be on separate lines, and there can be no line breaks within the pattern or value):

bar((x,(...((18,z)),_)))
bar((42,(foo((17,(18,(0,20)))),19)))

The only match produces a binding list where x maps to 42 and z maps to (0,20).

Note: You need to “pair up” with another student before starting the last problem.
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1. (Formal large) Give a formal large-step operational semantics for pattern-matching. Your judgment
should have the form (p, v) ⇓ b, meaning p matches v producing b. If p does not match v there must
be no derivation for any b. Hints:

• Have 9 rules, 3 of which are axioms.

• You need multiple rules for descendent patterns.

• Write b1@b2 for the result of appending b1 and b2. (This comes up only once; do not worry about
formalizing append.)

2. Give a p and v where multiple b are possible. That is, show the large-step semantics is nondeterministic.

3. (ML warm-up) Implement string_of_valu of type Ast.valu->string for converting values to con-
crete syntax. Implement string_of_binding_list of type (string * Ast.valu) list -> string
for converting a binding list to a string. The actual string is unimportant; we recommend putting each
binding on a separate line and putting a “:” between the variable and the value. Note print_ans
(provided) uses string_of_binding_list.

4. (ML large) Implement large : Ast.pattern -> Ast.valu -> (string * Ast.valu) list option
to implement pattern-matching. Your code should largely correspond to your inference rules (hint:
match on the pair (p,v)) with these differences:

• Return None if there is no match and Some b if there is a match with binding-list b.

• You may resolve the nondeterminism however you like, i.e., if there is more than one match your
code should just “find one” and return it. You must always produce one if there is one.

5. (Formal small) Give a formal small-step operational semantics for pattern-matching. Your judgment
should have the form p; v; b → p′; v′; b′. We are “done” when p is . Otherwise, if p matches v there
should be a rule that simplifies p or v or both by turning them into p′ and v′. The binding list b′ is either
b or something added onto b. A result for the “whole program” p and v is a b′ where p; v; · →∗ ; v′; b′.
If p and v do not match, there must be no way to derive p; v; · →∗ ; v′; b′. Hints:

• Have 9 rules, 8 of which are axioms.

• For the nonaxiom, “simplify” the “left side” of a pair-match. 1 axiom rule simplifies a pair-match
whose left side is the pattern.

• Almost all the axioms produce the same b they start with.

• A couple axioms will turn a pattern into . This is similar to IMP’s assign rule where we turn an
assignment into a skip.

• 1 axiom simplifies a tag-match (if the tags match) by just “stripping off the tags”.

Note: These “hints” are perhaps more for “checking your work” than guiding you.

6. (Pseudo-Denotational) In ML, implement denote, which takes a pattern and produces a
Ast.valu->(string * Ast.valu) list option. This translation must always terminate and pro-
duce an ML function that when run does not use the Ast.pattern type. (It does use the Ast.valu
type.) Hint: Descendent patterns are the most interesting.

7. (Equivalence Proofs) Find another student. Do one of the following yourself (as with other problems,
getting help is fine but it is your work) while the other student does the other :

(a) Prove: If p1; v1; b1 →n ; v2; b2, then there exists a b3 such that (p1, v1) ⇓ b3.

(b) Prove: If (p, v) ⇓ b, then for all b′, there exists a v′ such that p; v; b′ →∗ ; v′; b′@b.

After the other student has a “full draft”, review their proof and provide useful feedback. Using the
feedback you get, improve your proof. Turn in two copies of your proof; before and after feedback.

Important hints for the proofs are on the next page.
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Hints for 7a:

• The proof structure is similar to a proof we did in lecture 5.

• Note you are not asked to prove that b3 has any connection to b1 or b2. Doing so appears much more
difficult; it is a challenge problem.

• Use induction on n.

• Use this lemma, which you must prove: If p; v; b1 → p′; v′; b2 and (p′, v′) ⇓ b3, then there exists a b′3
such that (p, v) ⇓ b′3.

• The proof for the lemma will have cases for each rule in the small-step semantics and you will show a
derivation exists using the large-step semantics.

Hints for 7b:

• The proof structure is similar to a proof we did in lecture 5.

• Note the theorem uses b twice; you are proving the small-step semantics produces the same binding
list (plus b′).

• Note the theorem is stronger than what we actually care about (namely that p; v; · →∗ ; v′; b). You
will need the stronger claim in one case of the proof.

• Use induction on the assumed derivation.

• Use this lemma, which you should prove (it’s not difficult): If p; v; b →n p′; v′; b′, then (p, p2); (v, v2); b →n

(p′, p2); (v′, v2); b′.

Challenge Problems:

1. Complete the ML implementation of the small-step semantics by implementing:

small_step: Ast.pattern -> Ast.valu -> (string * Ast.valu) list ->
(Ast.pattern * Ast.valu * (string * Ast.valu) list) list

What makes the ML version difficult is turning the nondeterministic choice of step-sequences into
explicit search, but some of this is done for you: iter maintains a stack of program states left to
consider; small step takes one state and returns a list of states. Hint: This list could contain 0, 1, 2,
or 3 states. Hint: Think about how recursion interacts with multiple next states.

2. Prove this stronger version of 7a, i.e., the real equivalence claim: If p1; v1; · →n ; v2; b, then (p1, v1) ⇓ b.
Warning: Your instructor simplified 7(a) after getting snarled up trying to do this! It should be doable,
but strengthening the induction hypothesis probably requires some awkward statements about some
binding lists being larger than others, and you may need a lemma that binding lists only grow in the
small-step semantics. If you turn something in, please be confident you have the induction hypothesis
right so that the TA does not need to grade complicated incorrect arguments.

What to turn in:

• Caml source code in a file called hw2.ml. Change only the functions you are asked to implement. More
helper functions are fine, but the sample solution has none.

• Hard-copy (written or typed) answers to nonprogramming problems.

• The name of your “partner”.

Email your source code to Sam as firstname-lastname-hw2.tgz or firstname-lastname-hw2.zip. The
code should untar/unzip into a directory called firstname-lastname-hw2. Hard copy solutions can be
emailed in a pdf file, put in Sam’s grad student mailbox, or given to him directly.

Do not modify Caml files other than hw2.ml.
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