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CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2009

Lecture 4— Proofs about Operational Semantics;

Pseudo-Denotational Semantics
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This lecture

• Continue last lecture, including detailed proofs (and some wrong

approaches) of two “theorems”

– How to prove them

– Why these theorems are “interesting”

• The idea behind “denotational semantics” via translation to ML
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Proofs

Write out proofs by hand for:

• while 1 skip diverges

– Key point: Must get induction hypothesis “just right” — not

too strong (false) or too weak (proof doesn’t go through)

• “No negatives” is preserved by evaluation

– Can define a program property via judgments and prove it

holds after every step

– “Inverting assumed derivations” gives you necessary facts for

smaller expressions/statements (e.g., the while case)
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Motivation of non-negatives

While “no negatives preserved” boils to down to properties of blue-+

and blue-*, writing out the whole proof ensures our language has no

mistakes or bad interactions.

The theorem is false if we have:

• Overly flexible rules, e.g.:

H ; c ⇓ c′

• An “unsafe” language like C:

H(x) = {c0, . . . , cn−1} H ; e ⇓ c c ≥ n

H ; x[e] := e′ → H ′ ; s′
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Even more general proofs to come

We defined the semantics.

Given our semantics, we established properties of programs and sets of

programs.

More interesting is having multiple semantics—for what program

states are they equivalent? (For what notion of equivalence?)

Or having a more abstract semantics (e.g., a type system) and asking

if it is preserved under evaluation. (If e has type τ and e becomes e′,

does e′ have type τ?)

But first a one-lecture detour to “denotational” semantics.
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A different approach

Operational semantics defines an interpreter, from abstract syntax to

abstract syntax. Metalanguage is inference rules (slides) or Caml

(interp.ml).

Denotational semantics defines a compiler (translater), from abstract

syntax to a different language with known semantics.

Target language is math, but we’ll make it Caml for now.

Metalanguage is math or Caml (we’ll show both).
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The basic idea

A heap is a math/ML function from strings to integers: string → int

An expression denotes a math/ML function from heaps to integers.

den(e) : (string → int) → int

A statement denotes a math/ML function from heaps to heaps.

den(s) : (string → int) → (string → int)

Now just define den in our metalanguage (math or ML), inductively

over the source language.
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Expressions

den(e) : (string → int) → int

den(c) = fun h -> c

den(x) = fun h -> h x

den(e1 + e2) = fun h -> (den(e1) h) + (den(e2) h)

den(e1 ∗ e2) = fun h -> (den(e1) h) * (den(e2) h)

In plus (and times) case, two “ambiguities”:

• “+” from source language or target language?

– Translate abstract + to Caml +, ignoring overflow (!)

• when do we denote e1 and e2?

– Not a focus of the metalanguage. At “compile time”.
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Switching metalanguage

With Caml as our metalanguage, ambiguities go away.

But it’s harder to distinguish mentally between “target” and “meta”.

If denote in function body, then source is “around at run time”.

• After translation, should be able to “remove” the definition of the

abstract syntax.

• ML doesn’t have such a feature, but the point is we no longer

need the abstract syntax.

(See denote.ml.)
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Statements, w/o while

den(s) : (string → int) → (string → int)

den(skip) = fun h -> h

den(x := e) =

fun h -> (fun v -> if x=v then den(e) h else h v)

den(s1; s2) = fun h -> den(s2) (den(s1) h)

den(if e s1 s2) =

fun h -> if den(e) h > 0 then den(s1) h else den(s2) h

Same ambiguities; same answers.

See denote.ml.
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While

den(while e s) = | While(e,s) ->

let rec f h = let d1=denote_exp e in

if (den(e) h)>0 let d2=denote_stmt s in

then f (den(s) h) let rec f h =

else h in if (d1 h)>0

f then f (d2 h)

else h in

f

The function denoting a while statement is inherently recursive!

Good thing our target language has recursive functions!
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Finishing the story

let denote_prog s =

let d = denote_stmt s in

fun () -> (d (fun x -> 0)) "ans"

Compile-time: let x = denote_prog (parse file).

Run-time: print_int (x ()).

In-between: We have a Caml program using only functions, variables,

ifs, constants, +, *, >, etc.
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The real story

For “real” denotational semantics, target language is math

(And we write [[s]] instead of den(s))

Example: [[x := e]][[H]] = [[H]][x 7→ [[e]][[H]]]

There are two major problems, both due to while:

1. Math functions do not diverge, so no function denotes

while 1 skip.

2. The denotation of loops cannot be circular.
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The elevator version; ignorable for 505

For (1), we “lift” the semantic domains to include a special ⊥.

den(s) : (string → int) → ((string → int) ∪ ⊥).

• Have to change meaning of den(s2) ◦ den(s1) appropriately.

For (2), we use while e s to define a (meta)function f that given a lifted

heap-transformer X produces a lifted heap-transformer X′:

• If den(e)(den(H)) = 0, then den(H).

• Else den(s) ◦ X.

Now let den(while e s) be the least fixed-point of f .

• An hour of math to prove the least fixed-point exists.

• Another hour to prove it’s the limit of starting with ⊥ and applying f

over and over (i.e., any number of loop iterations).

• Keywords: monotonic functions, complete partial orders, Knaster-Tarski

theorem
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Where we are

• Have seen operational and denotational semantics

• Connection to interpreters and compilers

• Useful for rigorous definitions and proving properties

• Next: Equivalence of semantics

– Crucial for compiler writers

– Crucial for code maintainers

• Then: Leave IMP behind and consider functions

But first: Will any of this help write an O/S?
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