

Where are we

Today is IMP's last lecture (hooray!). Done:

- Abstract Syntax
- Operational Semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- "Pseudo-Denotational" Semantics

Today:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next time: Local variables, lambda-calculus

Packet Filters

Almost everything I know about packet filters:

- Some bits come in off the wire
- Some application(s) want the "packet" and some do not (e.g., port number)
- $\bullet\,$ For safety, only the O/S can access the wire
- For extensibility, only an application can accept/reject a packet

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

- 1. Don't corrupt kernel data structures
- 2. Terminate (within a time bound)
- 3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and "hope" it has these properties?

Language-based approaches

1. Interpret a language.

+ clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly.

+ clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.

+ normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we'll get to (3)

<u>A General Pattern</u>

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:

- Query languages
- Active networks
- Client-side web scripts (Javascript)

Equivalence motivation

- Program equivalence (change program): code optimizer, code maintainer
- Semantics equivalence (change language): interpreter optimizer, language designer (prove properties for equivalent semantics with easier proof)

Warning: Proofs are easy with the right semantics and lemmas Note: Small-step often has harder proofs but models more interesting things

What is equivalence

Equivalence depends on *what is observable*!

- Partial I/O equivalence (if terminates, same ans)
 - while $1\ skip$ equivalent to everything
 - not transitive
- Total I/O (same termination behavior, same ans)
- Total heap equivalence (at termination, all (almost all) variables have the same value)
- Equivalence plus complexity bounds

- Is $O(2^{n^n})$ really equivalent to O(n)?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting

Program Example: Strength Reduction

Motivation: Strength reduction a common compiler optimization due to architecture issues.

Theorem: $H ; e * 2 \Downarrow c$ if and only if $H ; e + e \Downarrow c$.

Proof sketch: Just need "inversion of derivation" and math (hmm, no induction).

Program Example: Nested Strength Reduction

Theorem: If e' has a subexpression of the form e * 2, then $H ; e' \Downarrow c'$ if and only if $H ; e'' \Downarrow c'$ where e'' is e' with e * 2replaced with e + e.

First some useful metanotation:

$$C ::= [\cdot] | C + e | e + C | C * e | e * C$$

C[e] is "C with e in the hole".

So: If $(e_1 = C[e * 2] \text{ and } e_2 = C[e + e])$, then $(H; e_1 \Downarrow c' \text{ if and only if } H; e_2 \Downarrow c')$.

Proof sketch: By induction on structure ("syntax height") of C.

Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

- (a) For all n, if H; s_1 ; $(s_2; s_3) \rightarrow^n H'$; skip then there exist H'' and n' such that H; $(s_1; s_2); s_3 \rightarrow^{n'} H''$; skip and H''(ans) = H'(ans).
- (b) If for all n there exist H' and s' such that $H ; s_1; (s_2; s_3) \rightarrow^n H'; s'$, then for all n there exist H''and s'' such that $H ; (s_1; s_2); s_3 \rightarrow^n H''; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step *semantics* equivalent, then prove program equivalences in whichever is easier.

Language Equivalence Example

IMP w/o multiply:

IMP w/o multiply small-step:

SVAR

SLEFT

$$H; e_1
ightarrow e_1'
onumber \ H; e_1 + e_2
ightarrow e_1' + e_2$$

SADD

$$H; c_1 + c_2 \rightarrow c_1 + c_2$$

 $ext{SRIGHT} egin{array}{c} H; e_2 &
ightarrow e_2' \ \hline H; e_1 + e_2 &
ightarrow e_1 + e_2' \end{array}$

Theorem: Semantics are equivalent,

i.e.,
$$H ; e \Downarrow c$$
 if and only if $H; e \rightarrow^* c$.

Proof: We prove the two directions separately.

Proof, part 1:

First assume $H ; e \Downarrow c$; show $\exists n. H; e \rightarrow^n c$. Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$. (Proof uses SLEFT and SRIGHT.) Given the lemma, prove by induction on height h of derivation of $H; e \Downarrow c$:

- h = 1: Derivation is via CONST (so $H; e \rightarrow^{0} c$) or VAR (so $H; e \rightarrow^{1} c$).
- h > 1: Derivation ends with ADD, so e has the form $e_1 + e_2$, $H ; e_1 \Downarrow c_1, H ; e_2 \Downarrow c_2$, and c is $c_1 + c_2$. By induction $\exists n_1, n_2$. $H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$. So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$. So SADD lets us derive $H; e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.

Proof, part 2:

Now assume $\exists n. H; e \rightarrow^n c$; show $H; e \Downarrow c$. By induction on n:

- n = 0: e is c and CONST lets us derive H; $c \Downarrow c$.
- n > 0: ∃e'. H; e → e' and H; e' →ⁿ⁻¹ c. By induction H ; e' ↓ c. So this lemma suffices: If H; e → e' and H ; e' ↓ c, then H ; e ↓ c.
 Prove the lemma by induction on height h of derivation of H; e → e':
 - h = 1: Derivation ends with SVAR (so e' = c = H(x) and VAR gives $H ; x \Downarrow H(x)$) or with SADD (so e is some $c_1 + c_2$ and $e' = c = c_1 + c_2$ and ADD gives $H ; c_1 + c_2 \Downarrow c_1 + c_2$).

-h > 1: Derivation ends with SLEFT or SRIGHT ...

Proof, part 2 continued:

If e has the form $e_1 + e_2$ and e' has the form $e'_1 + e_2$, then the assumed derivations end like this:

$$\frac{H; e_1 \rightarrow e'_1}{H; e_1 + e_2 \rightarrow e'_1 + e_2} \qquad \qquad \frac{H; e'_1 \Downarrow c_1 \qquad H; e_2 \Downarrow c_2}{H; e'_1 + e_2 \Downarrow c_1 + c_2}$$

Using $H; e_1 \rightarrow e'_1, H; e'_1 \Downarrow c_1$, and the induction hypothesis, $H; e_1 \Downarrow c_1$. Using this fact, $H; e_2 \Downarrow c_2$, and ADD, we can derive $H; e_1 + e_2 \Downarrow c_1 + c_2$.

(If e has the form $e_1 + e_2$ and e' has the form $e_1 + e'_2$, the argument is analogous to the previous case (prove it!).)

A nice payoff

Theorem: The small-step semantics is deterministic, i.e., if

 $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$.

Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof.

 Given (((1+2) + (3+4)) + (5+6)) + (7+8) there are many execution sequences, which all produce 36 but with different intermediate expressions.

Proof:

- Large-step evaluation is deterministic (easy proof by induction).
- Small-step and and large-step are equivalent (just proved that).
- So small-step is deterministic.
- (Convince yourself a deterministic and a nondeterministic semantics can't be equivalent with our definition of equivalence.)

Conclusions

- Equivalence is a subtle concept.
- Proofs "seem obvious" only when the definitions are right.
- Some other language-equivalence claims: Replace WHILE rule with

 $\begin{array}{l} H ; e \Downarrow c \quad c \leq 0 \\ \hline H ; \text{ while } e \ s \to H ; \text{ skip} \end{array} \qquad \begin{array}{l} H ; e \Downarrow c \quad c > 0 \\ \hline H ; \text{ while } e \ s \to H ; s; \text{ while } e \ s \end{array}$ $\begin{array}{l} \text{Theorem: Languages are equivalent. (True)} \\ \text{Change syntax of heap and replace ASSIGN and VAR rules with} \\ \hline \hline H ; x := e \to H, x \mapsto e ; \text{ skip} \end{array} \qquad \begin{array}{l} H ; H(x) \Downarrow c \\ \hline H ; x \Downarrow c \end{array}$ $\begin{array}{l} \text{Theorem: Languages are equivalent. (False)} \end{array}$