
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2009

Lecture 5— Little Trusted Languages; Equivalence

Dan Grossman CSE505 Fall 2009, Lecture 5 1

'

&

$

%

Where are we

Today is IMP’s last lecture (hooray!). Done:

• Abstract Syntax

• Operational Semantics (large-step and small-step)

• Semantic properties of (sets of) programs

• “Pseudo-Denotational” Semantics

Today:

• Packet-filter languages and other examples

• Equivalence of programs in a semantics

• Equivalence of different semantics

Next time: Local variables, lambda-calculus

Dan Grossman CSE505 Fall 2009, Lecture 5 2

'

&

$

%

Packet Filters

Almost everything I know about packet filters:

• Some bits come in off the wire

• Some application(s) want the “packet” and some do not

(e.g., port number)

• For safety, only the O/S can access the wire

• For extensibility, only an application can accept/reject a packet

Conventional solution goes to user-space for every packet and app that

wants (any) packets

Faster solution: Run app-written filters in kernel-space

Dan Grossman CSE505 Fall 2009, Lecture 5 3

'

&

$

%

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures

2. Terminate (within a time bound)

3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?

Dan Grossman CSE505 Fall 2009, Lecture 5 4

'

&

$

%

Language-based approaches

1. Interpret a language.

+ clean operational semantics, + portable, - may be slow (+

filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly.

+ clean denotational semantics, + employ existing optimizers, -

upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.

+ normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)

Dan Grossman CSE505 Fall 2009, Lecture 5 5

'

&

$

%

A General Pattern

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:

• Query languages

• Active networks

• Client-side web scripts (Javascript)

Dan Grossman CSE505 Fall 2009, Lecture 5 6

'

&

$

%

Equivalence motivation

• Program equivalence (change program): code optimizer, code

maintainer

• Semantics equivalence (change language): interpreter optimizer,

language designer (prove properties for equivalent semantics with

easier proof)

Warning: Proofs are easy with the right semantics and lemmas

Note: Small-step often has harder proofs but models more interesting

things

Dan Grossman CSE505 Fall 2009, Lecture 5 7

'

&

$

%

What is equivalence

Equivalence depends on what is observable!

• Partial I/O equivalence (if terminates, same ans)

– while 1 skip equivalent to everything

– not transitive

• Total I/O (same termination behavior, same ans)

• Total heap equivalence (at termination, all (almost all) variables

have the same value)

• Equivalence plus complexity bounds

– Is O(2nn

) really equivalent to O(n)?

• Syntactic equivalence (perhaps with renaming)

– too strict to be interesting

Dan Grossman CSE505 Fall 2009, Lecture 5 8

'

&

$

%

Program Example: Strength Reduction

Motivation: Strength reduction a common compiler optimization due

to architecture issues.

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c.

Proof sketch: Just need “inversion of derivation” and math

(hmm, no induction).

Dan Grossman CSE505 Fall 2009, Lecture 5 9

'

&

$

%

Program Example: Nested Strength Reduction

Theorem: If e′ has a subexpression of the form e ∗ 2, then

H ; e′ ⇓ c′ if and only if H ; e′′ ⇓ c′ where e′′ is e′ with e ∗ 2
replaced with e + e.

First some useful metanotation:

C ::= [·] | C + e | e + C | C ∗ e | e ∗ C

C[e] is “C with e in the hole”.

So: If (e1 = C[e ∗ 2] and e2 = C[e + e]),
then (H ; e1 ⇓ c′ if and only if H ; e2 ⇓ c′).

Proof sketch: By induction on structure (“syntax height”) of C.

Dan Grossman CSE505 Fall 2009, Lecture 5 10

'

&

$

%

Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our

IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all n, if H ; s1; (s2; s3) →n H ′ ; skip then there exist

H ′′ and n′ such that H ; (s1; s2); s3 →n′
H ′′ ; skip and

H ′′(ans) = H ′(ans).

(b) If for all n there exist H ′ and s′ such that

H ; s1; (s2; s3) →n H ′ ; s′, then for all n there exist H ′′

and s′′ such that H ; (s1; s2); s3 →n H ′′ ; s′′.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics

equivalent, then prove program equivalences in whichever is easier.

Dan Grossman CSE505 Fall 2009, Lecture 5 11

'

&

$

%

Language Equivalence Example

IMP w/o multiply:

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1+c2

IMP w/o multiply small-step:

svar

H; x → H(x)

sadd

H; c1 + c2 → c1+c2

sleft
H; e1 → e′

1

H; e1 + e2 → e′
1 + e2

sright
H; e2 → e′

2

H; e1 + e2 → e1 + e′
2

Theorem: Semantics are equivalent,

i.e., H ; e ⇓ c if and only if H; e →∗ c.

Proof: We prove the two directions separately.

Dan Grossman CSE505 Fall 2009, Lecture 5 12

'

&

$

%

Proof, part 1:

First assume H ; e ⇓ c; show ∃n. H; e →n c.

Lemma (prove it!): If H; e →n e′, then H; e1 + e →n e1 + e′

and H; e + e2 →n e′ + e2. (Proof uses sleft and sright.)

Given the lemma, prove by induction on height h of derivation of

H ; e ⇓ c:

• h = 1: Derivation is via const (so H; e →0 c) or

var (so H; e →1 c).

• h > 1: Derivation ends with add, so e has the form e1 + e2,

H ; e1 ⇓ c1, H ; e2 ⇓ c2, and c is c1+c2.

By induction ∃n1, n2. H; e1 →n1 c1 and H; e2 →n2 c2.

So by our lemma H; e1 + e2 →n1 c1 + e2 and

H; c1 + e2 →n2 c1 + c2.

So sadd lets us derive H; e1 + e2 →n1+n2+1 c.

Dan Grossman CSE505 Fall 2009, Lecture 5 13

'

&

$

%

Proof, part 2:

Now assume ∃n. H; e →n c; show H ; e ⇓ c. By induction on n:

• n = 0: e is c and const lets us derive H ; c ⇓ c.

• n > 0: ∃e′. H; e → e′ and H; e′ →n−1 c.

By induction H ; e′ ⇓ c.

So this lemma suffices: If H; e → e′ and H ; e′ ⇓ c, then

H ; e ⇓ c.

Prove the lemma by induction on height h of derivation of

H; e → e′:

– h = 1: Derivation ends with svar (so e′ = c = H(x) and

var gives H ; x ⇓ H(x)) or with sadd (so e is some c1 + c2

and e′ = c = c1+c2 and add gives H ; c1 + c2 ⇓ c1+c2).

– h > 1: Derivation ends with sleft or sright ...

Dan Grossman CSE505 Fall 2009, Lecture 5 14

'

&

$

%

Proof, part 2 continued:

If e has the form e1 + e2 and e′ has the form e′
1 + e2, then the

assumed derivations end like this:

H; e1 → e′
1

H; e1 + e2 → e′
1 + e2

H ; e′
1 ⇓ c1 H ; e2 ⇓ c2

H ; e′
1 + e2 ⇓ c1+c2

Using H; e1 → e′
1, H ; e′

1 ⇓ c1, and the induction hypothesis,

H ; e1 ⇓ c1. Using this fact, H ; e2 ⇓ c2, and add, we can derive

H ; e1 + e2 ⇓ c1+c2.

(If e has the form e1 + e2 and e′ has the form e1 + e′
2, the

argument is analogous to the previous case (prove it!).)

Dan Grossman CSE505 Fall 2009, Lecture 5 15

'

&

$

%

A nice payoff

Theorem: The small-step semantics is deterministic, i.e., if

H; e →∗ c1 and H; e →∗ c2, then c1 = c2.

Not obvious (see sleft and sright), nor do I know a direct proof.

• Given (((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8) there are

many execution sequences, which all produce 36 but with different

intermediate expressions.

Proof:

• Large-step evaluation is deterministic (easy proof by induction).

• Small-step and and large-step are equivalent (just proved that).

• So small-step is deterministic.

• (Convince yourself a deterministic and a nondeterministic

semantics can’t be equivalent with our definition of equivalence.)

Dan Grossman CSE505 Fall 2009, Lecture 5 16

'

&

$

%

Conclusions

• Equivalence is a subtle concept.

• Proofs “seem obvious” only when the definitions are right.

• Some other language-equivalence claims:

Replace while rule with

H ; e ⇓ c c ≤ 0

H ; while e s → H ; skip

H ; e ⇓ c c > 0

H ; while e s → H ; s; while e s

Theorem: Languages are equivalent. (True)

Change syntax of heap and replace assign and var rules with

H ; x := e → H, x 7→ e ; skip

H ; H(x) ⇓ c

H ; x ⇓ c

Theorem: Languages are equivalent. (False)

Dan Grossman CSE505 Fall 2009, Lecture 5 17

