
'

&

$

%

CSE 505:
Concepts of Programming Languages

Frances Perry pretending to be Dan Grossman

Fall 2009

Lecture 9— More STλC Extensions and Related Topics

Dan Grossman CSE505 Fall 2009, Lecture 9 1

'

&

$

%

5 years of my life in 2 slides

Thesis topic: Proving fault-tolerance properties of assembly programs

using typed assembly languages.

• Cosmic rays flip bits resulting in errors.

• One solution – duplicate all computation and check for

consistency before making any permanent changes.

• Compilers are tricky beasts. Wouldn’t it be nice to know that your

program is really redudant?

• Use a assembly-language type system to prove that values are

duplicated and always checked when needed.

Sexy Job Market Spiel: cosmic rays, random bit flips, millions of

dollars lost, provably secure solution, flashy logo, ...

In Reality: lots and lots of type safety proofs

Dan Grossman CSE505 Fall 2009, Lecture 9 2

'

&

$

%

5 years of my life in 2 slides

1. Define an operational semantics to describe how a abstract

machine executes (heap, stack, registers, etc).

2. Figure out which states are ”bad” and what good invariants

prevent badness.

3. Define a type system to track invariants are maintained.

4. Prove the type system is sound with respect to #1 and #2 using

Progress and Preservation (with our good friends the substitution

lemma, canonical forms, etc, etc).

5. Provide a translation from a well typed source language into the

assembly language to show the type system isn’t too restrictive.

6. Rinse and repeat 3 times to generate 150 pages of prose, 100

pages of judgments, 220 pages of ascii proofs, and 1 Phd.

Dan Grossman CSE505 Fall 2009, Lecture 9 3

'

&

$

%

Outline

• Continue extending STλC– booleans and conditionals, data

structures (pairs, records, sums), recursion

• Discussion of “anonymous” types

• Consider termination informally

• Next time (two extended digressions): Curry-Howard Isomorphism,

Evaluation Contexts, Abstract Machines, Continuations

Dan Grossman CSE505 Fall 2009, Lecture 9 4

'

&

$

%

Extending STλC

• Extend Syntax: e, v, τ , . . .

• Extend Operational Semantics: e→ e

• Extend Typing Rules: Γ ` e : τ

• Extend Proofs: Progress, Preservation, Canonical Forms,

Substitution

Dan Grossman CSE505 Fall 2009, Lecture 9 5

'

&

$

%

STλC Review

e ::= λx. e | x | e e | c v ::= λx. e | c

τ ::= int | τ → τ Γ ::= · | Γ, x : τ

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

e[e′/x]: capture-avoiding substitution of e′ for free x in e

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Dan Grossman CSE505 Fall 2009, Lecture 9 6

'

&

$

%

Type Safety Proof Hierarchy

Safety: Well-typed programs never get stuck.

By induction on the number of steps.

• Progress: Well-typed programs are done or can take a step.

If · ` e : τ , then e is a value or ∃ e′ such that e→ e′.

By induction on Γ ` e : τ

– Canonical Forms: If it’s a duck, then it has feathers.

By inspection of values.

• Preservation: Making progress preserves the type.

If · ` e : τ and e→ e′, then · ` e′ : τ .

By induction on Γ ` e : τ

– Substitution: Things stay well-typed after stapple-gunning.

By induction on Γ, x : τ ′ ` e1 : τ
∗ Exchange: Reordering scoping is ok.

∗ Weakening: It’s ok to drop unused variables on the floor.

Dan Grossman CSE505 Fall 2009, Lecture 9 7

'

&

$

%

Booleans and Conditionals

e ::= . . . | true | false | if e1 then e2 else e3

τ ::= . . . | bool v ::= . . . | true | false

e1 → e′
1

if e1 then e2 else e3 → if e′
1 then e2 else e3

if true then e2 else e3 → e2 if false then e2 else e3 → e3

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Γ ` true : bool Γ ` false : bool

Notes: new Canonical Forms case, all lemma cases easy

(Also need to extend definition of substitution (will stop writing that)...)

Dan Grossman CSE505 Fall 2009, Lecture 9 8

'

&

$

%

Pairs (CBV, left-right)

e ::= . . . | (e, e) | e.1 | e.2
v ::= . . . | (v, v)

τ ::= . . . | τ ∗ τ

e1 → e′1

(e1, e2)→ (e′1, e2)

e2 → e′2

(v1, e2)→ (v1, e′2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

(v1, v2).1→ v1 (v1, v2).2→ v2

Small-step can be a pain (more concise notation next lecture)

Dan Grossman CSE505 Fall 2009, Lecture 9 9

'

&

$

%

Pairs continued

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

Canonical Forms: If · ` v : τ1 ∗ τ2, then v has the form (v1, v2).

Progress: New cases using C.F. are v.1 and v.2.

Preservation: For primitive reductions, inversion gives the result

directly.

Dan Grossman CSE505 Fall 2009, Lecture 9 10

'

&

$

%

Records

Records seem like pairs with named fields

e ::= . . . | {l1 = e1; . . . ; ln = en} | e.l
τ ::= . . . | {l1 : τ1; . . . ; ln : τn}
v ::= . . . | {l1 = v1; . . . ; ln = vn}

Fields do not α-convert.

Names might let us reorder fields, e.g.,

· ` {l1 = 42; l2 = true} : {l2 : bool; l1 : int}.

Nothing wrong with this, but many languages disallow it. (Why?

Run-time efficiency and/or type inference)

More on this when we study subtyping

Dan Grossman CSE505 Fall 2009, Lecture 9 11

'

&

$

%

Sums

What about ML-style datatypes:

type t = A | B of int | C of int*t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type ’a mylist = ...)

4. Names the type

Today we’ll model just (1) with (anonymous) sum types...

Dan Grossman CSE505 Fall 2009, Lecture 9 12

'

&

$

%

Sum syntax and overview

e ::= . . . | A(e) | B(e) | match e with Ax. e | Bx. e

v ::= . . . | A(v) | B(v)

τ ::= . . . | τ1 + τ2

• Only two constructors: A and B

• All values of any sum type built from these constructors

• So A(e) can have any sum type allowed by e’s type

• No need to declare sum types in advance

• Like functions, will “guess the type” in our rules

Dan Grossman CSE505 Fall 2009, Lecture 9 13

'

&

$

%

Sum semantics

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ax. e1 | By. e2 → e2[v/y]

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

match has binding occurrences, just like pattern-matching.

(Definition of substitution must avoid capture, just like functions.)

Dan Grossman CSE505 Fall 2009, Lecture 9 14

'

&

$

%

What is going on

Feel free to think about tagged values in your head:

• A tagged value is a pair of a tag (A or B, or 0 or 1 if you prefer)

and the value

• A match checks the tag and binds the variable to the value

This much is just like Caml in lecture 1 and related to homework 2.

Sums in other guises:

• C: use an enum and a union

– More space than ML, but supports in-place mutation

• OOP: use an abstract superclass and subclasses

Dan Grossman CSE505 Fall 2009, Lecture 9 15

'

&

$

%

Sum Type-checking

Inference version (not trivial to infer; can require annotations)

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Key ideas:

• For constructor-uses, “other side can be anything”

• For match, both sides need same type since don’t know which

branch will be taken, just like an if.

Can encode booleans with sums. E.g., bool = int + int,

true = A(0), false = B(0).

Dan Grossman CSE505 Fall 2009, Lecture 9 16

'

&

$

%

Type Safety

Canonical Forms: If · ` v : τ1 + τ2, then there exists a v1 such that

either v is A(v1) and · ` v1 : τ1 or v is B(v1) and · ` v1 : τ2.

The rest is induction and substitution...

Dan Grossman CSE505 Fall 2009, Lecture 9 17

'

&

$

%

Pairs vs. sums

• You need both in your language

– With only pairs, you clumsily use dummy values, waste space,

and rely on unchecked tagging conventions

– Example: replace int + (int→ int) with

int ∗ (int ∗ (int→ int))

• “logical duals” (as we’ll see soon and the typing rules show)

– To make a τ1 ∗ τ2 you need a τ1 and a τ2.

– To make a τ1 + τ2 you need a τ1 or a τ2.

– Given a τ1 ∗ τ2, you can get a τ1 or a τ2

(or both; your “choice”).

– Given a τ1 + τ2, you must be prepared for either a τ1 or τ2

(the value’s “choice”).

Dan Grossman CSE505 Fall 2009, Lecture 9 18

'

&

$

%

Base Types, in general

What about floats, strings, enums, . . . ? Could add them all or do

something more general. . .

Parameterize our language/semantics by a collection of base types

(b1, . . . , bn) and primitives (c1 : τ1, . . . , cn : τn).

Examples: concat : string→string→string

toInt : float→int

“hello” : string

For each primitive, assume if applied to values of the right types it

produces a value of the right type.

Together the types and assumed steps tell us how to type-check and

evaluate ci v1 . . . vn where ci is a primitive.

We can prove soundness once and for all given the assumptions.

Dan Grossman CSE505 Fall 2009, Lecture 9 19

'

&

$

%

Recursion

We won’t prove it, but every extension so far preserves termination. A

Turing-complete language needs some sort of loop. What we add

won’t be encodable in STλC.

e ::= . . . | fix e

e→ e′

fix e→ fix e′ fix λx. e→ e[fix λx. e/x]

Dan Grossman CSE505 Fall 2009, Lecture 9 20

'

&

$

%

Using fix

It works just like let rec, e.g.,

fix λf. λn. if n < 1 then 1 else n ∗ (f(n− 1))

Note: You can use it for mutual recursion too.

Dan Grossman CSE505 Fall 2009, Lecture 9 21

'

&

$

%

Pseudo-math digression

Why is it called fix? In math, a fixed-point of a function g is an x

such that g(x) = x.

Let g be λf. λn. if n < 1 then 1 else n ∗ (f(n− 1)).

If g is applied to a function that computes factorial for arguments

≤ m, then g returns a function that computes factorial for arguments

≤ m+ 1.

Now g has type (int→ int)→ (int→ int). The fix-point of g is

the function that computes factorial for all natural numbers.

And fix g is equivalent to that function. That is, fix g is the fix-point

of g.

Dan Grossman CSE505 Fall 2009, Lecture 9 22

'

&

$

%

Typing fix

Γ ` e : τ → τ

Γ ` fix e : τ

Math explanation: If e is a function from τ to τ , then fix e, the

fixed-point of e, is some τ with the fixed-point property. So it’s

something with type τ .

Operational explanation: fix λx. e′ becomes e′[fix λx. e′/x]. The

substitution means x and fix λx. e′ better have the same type. And

the result means e′ and fix λx. e′ better have the same type.

Note: The τ in the typing rule is usually instantiated with a function

type e.g., τ1 → τ2, so e has type (τ1 → τ2)→ (τ1 → τ2).

Note: Proving soundness is straightforward!

Dan Grossman CSE505 Fall 2009, Lecture 9 23

'

&

$

%

General approach

We added lets, booleans, pairs, records, sums, and fix. Let was

syntactic sugar. Fix made us Turing-complete by “baking in”

self-application. The others added types.

Whenever we add a new form of type τ there are:

• Introduction forms (ways to make values of type τ)

• Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim forms”?

Dan Grossman CSE505 Fall 2009, Lecture 9 24

'

&

$

%

Anonymity

We added many forms of types, all unnamed a.k.a. structural.

Many real PLs have (all or mostly) named types:

• Java, C, C++: all record types (or similar) have names (omitting

them just means compiler makes up a name)

• Caml sum-types have names.

A never-ending debate:

• Structual types allow more code reuse, which is good.

• Named types allow less code reuse, which is good.

• Structural types allow generic type-based code, which is good.

• Named types allow type-based code to distinguish names, which is

good.

The theory is often easier and simpler with structural types.

Dan Grossman CSE505 Fall 2009, Lecture 9 25

'

&

$

%

Termination

Surprising fact: If · ` e : τ in the STλC with all our additions except

fix, then there exists a v such that e→∗ v.

That is, all programs terminate.

So termination is trivially decidable (the constant “yes” function), so

our language is not Turing-complete.

Proof is in the book. It requires cleverness because the size of

expressions does not “go down” as programs run.

Non-proof: Recursion in λ calculus requires some sort of

self-application. Easy fact: For all Γ, x, and τ , we cannot derive

Γ ` x x : τ .

Dan Grossman CSE505 Fall 2009, Lecture 9 26

