

## 5 years of my life in 2 slides

*Thesis topic:* Proving fault-tolerance properties of assembly programs using typed assembly languages.

- Cosmic rays flip bits resulting in errors.
- One solution duplicate all computation and check for consistency before making any permanent changes.
- Compilers are tricky beasts. Wouldn't it be nice to know that your program is really redudant?
- Use a assembly-language type system to prove that values are duplicated and always checked when needed.

Sexy Job Market Spiel: cosmic rays, random bit flips, millions of dollars lost, provably secure solution, flashy logo, ...

In Reality: lots and lots of type safety proofs

## 5 years of my life in 2 slides

- 1. Define an operational semantics to describe how a abstract machine executes (heap, stack, registers, etc).
- 2. Figure out which states are "bad" and what good invariants prevent badness.
- 3. Define a type system to track invariants are maintained.
- Prove the type system is sound with respect to #1 and #2 using Progress and Preservation (with our good friends the substitution lemma, canonical forms, etc, etc).
- 5. Provide a translation from a well typed source language into the assembly language to show the type system isn't too restrictive.
- 6. Rinse and repeat 3 times to generate 150 pages of prose, 100 pages of judgments, 220 pages of ascii proofs, and 1 Phd.

# <u>Outline</u>

- Continue extending STλC– booleans and conditionals, data structures (pairs, records, sums), recursion
- Discussion of "anonymous" types
- Consider termination informally
- Next time (two extended digressions): Curry-Howard Isomorphism, Evaluation Contexts, Abstract Machines, Continuations

## Extending $ST\lambda C$

- Extend Syntax:  $e, v, \tau, \ldots$
- Extend Operational Semantics:  $e \rightarrow e$
- Extend Typing Rules:  $\Gamma \vdash e: \tau$
- Extend Proofs: Progress, Preservation, Canonical Forms, Substitution

$$ST\lambda C \text{ Review}$$

$$e ::= \lambda x. e \mid x \mid e e \mid c \quad v ::= \lambda x. e \mid c$$

$$\tau ::= \text{int} \mid \tau \to \tau \quad \Gamma ::= \cdot \mid \Gamma, x : \tau$$

$$(\lambda x. e) \mid v \to e[v/x] \quad (e_1 \to e_1') \quad (e_2 \to e_1') = e_2 \quad (e_2 \to e_2') = e_1' = e_2 \quad (e_2 \to e_2') = e_1 \quad (e_2 \to e_1') = e_2 \quad (e_2 \to e_2') = e_1' = e_2' \quad (e_2 \to e_2') = e_1' = e_1' \quad (e_2 \to e_2') = e_1' = e_1' \quad (e_2 \to e_2') = e_1' = e_1' \quad (e_2 \to e_1') = e_1' = e_2' \quad (e_2 \to e_1') = e_1' \quad (e_1' \to e_2') \quad (e_1' \to e_1') = e_1' \quad (e_1' \to e_2') \quad (e_1' \to e_1') = e_1' \quad (e_1' \to e_1') = (e_1' \to e_1') = (e_1' \to e_1') = (e_1' \to e_1' \quad$$

# Type Safety Proof Hierarchy

**Safety:** Well-typed programs never get stuck. By induction on the number of steps.

- Progress: Well-typed programs are done or can take a step.
   If · ⊢ e : τ, then e is a value or ∃ e' such that e → e'.
   By induction on Γ ⊢ e : τ
  - Canonical Forms: If it's a duck, then it has feathers.
     By inspection of values.
- Preservation: Making progress preserves the type.
   If · ⊢ e : τ and e → e', then · ⊢ e' : τ.
   By induction on Γ ⊢ e : τ
  - Substitution: Things stay well-typed after stapple-gunning. By induction on  $\Gamma, x: au' \vdash e_1: au$ 
    - \* Exchange: Reordering scoping is ok.
    - \* Weakening: It's ok to drop unused variables on the floor.







Progress: New cases using C.F. are v.1 and v.2.

Preservation: For primitive reductions, inversion gives the result *directly*.

## <u>Records</u>

Records seem like pairs with named fields

Fields do not  $\alpha$ -convert.

Names might let us reorder fields, e.g.,

$$\cdot \vdash \{l_1 = 42; l_2 = \mathsf{true}\} : \{l_2 : \mathsf{bool}; l_1 : \mathsf{int}\}.$$

*Nothing wrong with this*, but many languages disallow it. (Why? Run-time efficiency and/or type inference)

More on this when we study *subtyping* 

## <u>Sums</u>

What about ML-style datatypes:

type t = A | B of int | C of int\*t

- 1. Tagged variants (i.e., discriminated unions)
- 2. Recursive types
- 3. Type constructors (e.g., type 'a mylist = ...)
- 4. Names the type

Today we'll model just (1) with (anonymous) sum types...

#### Sum syntax and overview

- e ::= ... | A(e) | B(e) | match e with Ax. e | Bx. e
- $v ::= \ldots | \mathbf{A}(v) | \mathbf{B}(v)$
- au ::= ... |  $au_1 + au_2$
- $\bullet\,$  Only two constructors:  ${\bm A}$  and  ${\bm B}$
- All values of any sum type built from these constructors
- So A(e) can have any sum type allowed by e's type
- No need to declare sum types in advance
- Like functions, will "guess the type" in our rules



## What is going on

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of a tag (A or B, or 0 or 1 if you prefer) and the value
- A match checks the tag and binds the variable to the value

This much is just like Caml in lecture 1 and related to homework 2. Sums in other guises:

- C: use an enum and a union
  - More space than ML, but supports in-place mutation
- OOP: use an abstract superclass and subclasses

# Sum Type-checking

Inference version (not trivial to infer; can require annotations)

 $\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{A}(e) : \tau_1 + \tau_2} \qquad \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{B}(e) : \tau_1 + \tau_2}$ 

 $\underline{\Gamma \vdash e: \tau_1 + \tau_2 \qquad \Gamma, x: \tau_1 \vdash e_1: \tau \qquad \Gamma, y: \tau_2 \vdash e_2: \tau}$ 

 $\Gamma \vdash \mathsf{match} \ e \ \mathsf{with} \ \mathsf{A}x. \ e_1 \mid \mathsf{B}y. \ e_2: \tau$ 

Key ideas:

- For constructor-uses, "other side can be anything"
- For match, both sides need same type since don't know which branch will be taken, just like an if.

Can encode booleans with sums. E.g., **bool** = int + int, true = A(0), false = B(0).

# Type Safety

Canonical Forms: If  $\cdot \vdash v : \tau_1 + \tau_2$ , then there exists a  $v_1$  such that either v is  $A(v_1)$  and  $\cdot \vdash v_1 : \tau_1$  or v is  $B(v_1)$  and  $\cdot \vdash v_1 : \tau_2$ .

The rest is induction and substitution...

#### Pairs vs. sums

- You need both in your language
  - With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
  - Example: replace  $int + (int \rightarrow int)$  with  $int * (int * (int \rightarrow int))$
- "logical duals" (as we'll see soon and the typing rules show)
  - To make a  $au_1 * au_2$  you need a  $au_1$  and a  $au_2$ .
  - To make a  $au_1 + au_2$  you need a  $au_1$  or a  $au_2$ .
  - Given a  $\tau_1 * \tau_2$ , you can get a  $\tau_1$  or a  $\tau_2$ (or both; your "choice").
  - Given a  $\tau_1 + \tau_2$ , you must be prepared for either a  $\tau_1$  or  $\tau_2$  (the value's "choice").

## Base Types, in general

What about floats, strings, enums, ...? Could add them all or do something more general...

```
Parameterize our language/semantics by a collection of base types (b_1, \ldots, b_n) and primitives (c_1 : \tau_1, \ldots, c_n : \tau_n).
```

```
Examples: concat : string\rightarrowstring\rightarrowstring
```

```
"hello" : string
```

For each primitive, *assume* if applied to values of the right types it produces a value of the right type.

Together the types and assumed steps tell us how to type-check and evaluate  $c_i v_1 \dots v_n$  where  $c_i$  is a primitive.

We can prove soundness once and for all given the assumptions.

### **Recursion**

We won't prove it, but every extension so far preserves termination. A Turing-complete language needs some sort of loop. What we add won't be encodable in  $ST\lambda C$ .

$$e := \dots | \text{fix } e$$

$$\frac{e \to e'}{\mathsf{fix} \; e \to \mathsf{fix} \; e'} \qquad \qquad \frac{\mathsf{fix} \; \lambda x. \; e \to e[\mathsf{fix} \; \lambda x. \; e/x]}{\mathsf{fix} \; \lambda x. \; e \to e[\mathsf{fix} \; \lambda x. \; e/x]}$$

# Using fix

It works just like let rec, e.g.,

fix  $\lambda f$ .  $\lambda n$ . if n < 1 then 1 else n \* (f(n-1))

Note: You can use it for mutual recursion too.

### Pseudo-math digression

Why is it called fix? In math, a fixed-point of a function g is an x such that g(x) = x.

Let g be  $\lambda f$ .  $\lambda n$ . if n < 1 then 1 else n \* (f(n-1)).

If g is applied to a function that computes factorial for arguments  $\leq m$ , then g returns a function that computes factorial for arguments  $\leq m+1$ .

Now g has type (int  $\rightarrow$  int)  $\rightarrow$  (int  $\rightarrow$  int). The fix-point of g is the function that computes factorial for *all* natural numbers.

And fix g is equivalent to that function. That is, fix g is the fix-point of g.

# Typing fix

 $\frac{\Gamma \vdash e: \tau \to \tau}{\Gamma \vdash \mathsf{fix} \; e: \tau}$ 

Math explanation: If e is a function from  $\tau$  to  $\tau$ , then fix e, the fixed-point of e, is some  $\tau$  with the fixed-point property. So it's something with type  $\tau$ .

Operational explanation: fix  $\lambda x$ . e' becomes  $e'[\text{fix } \lambda x$ . e'/x]. The substitution means x and fix  $\lambda x$ . e' better have the same type. And the result means e' and fix  $\lambda x$ . e' better have the same type.

Note: The  $\tau$  in the typing rule is usually instantiated with a function type e.g.,  $\tau_1 \to \tau_2$ , so e has type  $(\tau_1 \to \tau_2) \to (\tau_1 \to \tau_2)$ .

Note: Proving soundness is straightforward!

## General approach

We added lets, booleans, pairs, records, sums, and fix. Let was syntactic sugar. Fix made us Turing-complete by "baking in" self-application. The others *added types*.

Whenever we add a new form of type au there are:

- Introduction forms (ways to make values of type au)
- Elimination forms (ways to use values of type au)

What are these forms for functions? Pairs? Sums?

When you add a new type, think "what are the intro and elim forms"?

# Anonymity

We added many forms of types, all *unnamed* a.k.a. *structural*.

Many real PLs have (all or mostly) *named* types:

- Java, C, C++: all record types (or similar) have names (omitting them just means compiler makes up a name)
- Caml sum-types have names.

A never-ending debate:

- Structual types allow more code reuse, which is good.
- Named types allow less code reuse, which is good.
- Structural types allow generic type-based code, which is good.
- Named types allow type-based code to distinguish names, which is good.

The theory is often easier and simpler with structural types.

### **Termination**

Surprising fact: If  $\cdot \vdash e : \tau$  in the ST $\lambda$ C with all our additions *except* fix, then there exists a v such that  $e \rightarrow^* v$ .

That is, all programs terminate.

So termination is trivially decidable (the constant "yes" function), so our language is not Turing-complete.

Proof is in the book. It requires cleverness because the size of expressions does *not* "go down" as programs run.

Non-proof: Recursion in  $\lambda$  calculus requires some sort of self-application. Easy fact: For all  $\Gamma$ , x, and  $\tau$ , we *cannot* derive  $\Gamma \vdash x \ x : \tau$ .