Type Safety for ST λ C with Constants CSE 505, Fall 2009

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

$$\begin{array}{lll} e & ::= & c \mid \lambda x. \; e \mid x \mid e \; e \\ v & ::= & c \mid \lambda x. \; e \\ \tau & ::= & \mathsf{int} \mid \tau \to \tau \\ \Gamma & ::= & \cdot \mid \Gamma, x : \tau \end{array}$$

Evaluation Rules

$$e \rightarrow e'$$

Typing Rules

$$\Gamma \vdash e : \tau$$

$$\begin{array}{ll} \text{T-Const} & & \frac{\text{T-Fun}}{\Gamma \vdash c : \mathsf{int}} & \frac{\text{T-Fun}}{\Gamma \vdash x : \Gamma(x)} & \frac{\Gamma. \mathsf{Fun}}{\Gamma, x : \tau_1 \vdash e : \tau_2} & x \not\in \mathsf{Dom}(\Gamma) \\ & & \frac{\Gamma. \mathsf{APP}}{\Gamma \vdash e_1 : \tau_2 \to \tau_1} & \Gamma \vdash e_2 : \tau_2 \\ & & \frac{\Gamma. \mathsf{APP}}{\Gamma \vdash e_1 : e_2 : \tau_1} \end{array}$$

Type Soundness

Theorem (Type Soundness). If $\cdot \vdash e : \tau$ and $e \to^* e'$, then either e' is a value or there exists an e'' such that $e' \to e''$.

Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach e' from e establishes that $\cdot \vdash e' : \tau$. Then the Progress Theorem ensures e' is a value or can step to some e''.

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). *If* $\cdot \vdash v : \tau$, then

i If τ is int, then v is a constant, i.e., some c.

ii If τ is $\tau_1 \to \tau_2$, then v is a lambda, i.e., λx . e for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, then the only rule which lets us give a value this type is T-Const.

ii If τ is $\tau_1 \to \tau_2$, then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e' such that $e \to e'$.

Progress. The proof is by induction on (the height of) the derivation of $\cdot \vdash e : \tau$, proceeding by cases on the bottommost rule used in the derivation.

T-Const e is a constant, which is a value, so we are done.

T-VAR Impossible, as Γ is \cdot .

T-Fun e is λx . e', which is a value, so we are done.

T-APP e is e_1 e_2 .

By inversion, $\cdot \vdash e_1 : \tau_2 \to \tau_1$ and $\cdot \vdash e_2 : \tau_2$.

If e_1 is not a value, then $\cdot \vdash e_1 : \tau_2 \to \tau_1$ and the induction hypothesis ensures $e_1 \to e'_1$ for some e'_1 . Therefore, by E-APP1, $e_1 \ e_2 \to e'_1 \ e_2$.

Else e_1 is a value. If e_2 is not a value, then $\cdot \vdash e_2 : \tau_2$ and our induction hypothesis ensures $e_2 \to e_2'$ for some e_2' . Therefore, by E-APP2, $e_1 e_2 \to e_1 e_2'$.

Else e_1 and e_2 are values. Then $\cdot \vdash e_1 : \tau_2 \to \tau_1$ and the Canonical Forms Lemma ensures e_1 is some λx . e'. And λx . e' $e_2 \to e'[e_2/x]$ by E-APPLY, so e_1 e_2 can take a step.

We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where Γ is \cdot , but proving the Substitution Lemma itself requires the stronger induction hypothesis using any Γ .

Lemma (Substitution). If $\Gamma, x:\tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$.

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they're not that difficult).

Lemma (Weakening). If $\Gamma \vdash e : \tau$ and $x \notin Dom(\Gamma)$, then $\Gamma, x : \tau' \vdash e : \tau$.

Lemma (Exchange). If $\Gamma, x:\tau_1, y:\tau_2 \vdash e:\tau$ and $y \neq x$, then $\Gamma, y:\tau_2, x:\tau_1 \vdash e:\tau$.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of $\Gamma, x:\tau' \vdash e : \tau$. There are four cases. In all cases, we know $\Gamma \vdash e' : \tau'$ by assumption.

T-CONST e is c, so c[e'/x] is c. By T-CONST, $\Gamma \vdash c$: int.

T-VAR e is y and $\Gamma, x:\tau' \vdash y:\tau$.

If $y \neq x$, then y[e'/x] is y. By inversion on the typing rule, we know that $(\Gamma, x:\tau')(y) = \tau$. Since $y \neq x$, we know that $\Gamma(y) = \tau$. So by T-VAR, $\Gamma \vdash y : \tau$.

If y = x, then y[e'/x] is e'. $\Gamma, x:\tau' \vdash x : \tau$, so by inversion, $(\Gamma, x:\tau')(x) = \tau$, so $\tau = \tau'$. We know $\Gamma \vdash e' : \tau'$, which is exactly what we need.

T-APP e is $e_1 e_2$, so e[e'/x] is $(e_1[e'/x]) (e_2[e'/x])$.

We know $\Gamma, x:\tau' \vdash e_1 \ e_2 : \tau_1$, so, by inversion on the typing rule, we know $\Gamma, x:\tau' \vdash e_1 : \tau_2 \to \tau_1$ and $\Gamma, x:\tau' \vdash e_2 : \tau_2$ for some τ_2 .

Therefore, by induction, $\Gamma \vdash e_1[e'/x] : \tau_2 \to \tau_1$ and $\Gamma \vdash e_2[e'/x] : \tau_2$.

Given these, T-APP lets us derive $\Gamma \vdash (e_1[e'/x]) (e_2[e'/x]) : \tau_1$.

So by the definition of substitution $\Gamma \vdash (e_1 \ e_2)[e'/x] : \tau_1$.

T-Fun e is λy . e_b , so e[e'/x] is λy . $(e_b[e'/x])$. We can α -convert λy . e_b to ensure $y \notin \text{Dom}(\Gamma)$.

We know $\Gamma, x:\tau' \vdash \lambda y. \ e_b: \tau_1 \to \tau_2$, so, by inversion on the typing rule, we know $\Gamma, x:\tau', y:\tau_1 \vdash e_b: \tau_2$.

By Exchange, we know that $\Gamma, y:\tau_1, x:\tau' \vdash e_b:\tau_2$.

By Weakening, we know that $\Gamma, y:\tau_1 \vdash e':\tau'$.

We have rearranged the two typing judgments so that our induction hypothesis applies (using $\Gamma, y:\tau_1$ for the typing context called Γ in the statement of the lemma), so, by induction, $\Gamma, y:\tau_1 \vdash e_b[e'/x]:\tau_2$.

Given this, T-Fun lets us derive $\Gamma \vdash \lambda y$. $e_b[e'/x] : \tau_1 \to \tau_2$.

So by the definition of substitution, $\Gamma \vdash (\lambda y. \ e_b)[e'/x] : \tau_1 \to \tau_2$.

Theorem (Preservation). *If* $\cdot \vdash e : \tau$ *and* $e \rightarrow e'$, *then* $\cdot \vdash e' : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases. T-Const e is c. This case is impossible, as there is no e' such that $c \to e'$.

T-VAR e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is λx . e_b . This case is impossible, as there is no e' such that λx . $e_b \to e'$.

T-APP e is $e_1 e_2$, so $\cdot \vdash e_1 e_2 : \tau$.

By inversion on the typing rule, $\cdot \vdash e_1 : \tau_2 \to \tau$ and $\cdot \vdash e_2 : \tau_2$ for some τ_2 . There are three possible rules for deriving $e_1 \ e_2 \to e'$.

- E-APP1 Then $e' = e'_1 \ e_2$ and $e_1 \to e'_1$. By $\cdot \vdash e_1 : \tau_2 \to \tau$, $e_1 \to e'_1$, and induction, $\cdot \vdash e'_1 : \tau_2 \to \tau$. Using this and $\cdot \vdash e_2 : \tau_2$, T-APP lets us derive $\cdot \vdash e'_1 \ e_2 : \tau$.
- E-APP2 Then $e' = e_1 \ e'_2$ and $e_2 \to e'_2$. By $\cdot \vdash e_2 : \tau_2, \ e_2 \to e'_2$, and induction $\cdot \vdash e'_2 : \tau_2$. Using this and $\cdot \vdash e_1 : \tau_2 \to \tau$, T-APP lets us derive $\cdot \vdash e_1 \ e'_2 : \tau$.
- E-APPLY Then e_1 is λx . e_b for some x and e_b , and $e' = e_b[e_2/x]$. By inversion of the typing of $\cdot \vdash e_1 : \tau_2 \to \tau$, we have $\cdot, x : \tau_2 \vdash e_b : \tau$. This and $\cdot \vdash e_2 : \tau_2$ lets us use the Substitution Lemma to conclude $\cdot \vdash e_b[e_2/x] : \tau$.

4