
CSE505: Graduate Programming Languages

Lecture 11 — STLC Extensions and Related Topics

Dan Grossman
Fall 2012

Review

e ::= λx. e | x | e e | c
v ::= λx. e | c

τ ::= int | τ → τ
Γ ::= · | Γ, x : τ

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e[e′/x]: capture-avoiding substitution of e′ for free x in e

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Preservation: If · ` e : τ and e→ e′, then · ` e′ : τ .
Progress: If · ` e : τ , then e is a value or ∃ e′ such that e→ e′.

Dan Grossman CSE505 Fall 2012, Lecture 11 2

Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

I Extend the syntax

I Extend the operational semantics
I Derived forms (syntactic sugar), or
I Direct semantics

I Extend the type system

I Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Dan Grossman CSE505 Fall 2012, Lecture 11 3

Let bindings (CBV)

e ::= . . . | let x = e1 in e2

e1 → e′1
let x=e1 in e2 → let x=e′1 in e2 let x=v in e→ e[v/x]

Γ ` e1 : τ ′ Γ, x : τ ′ ` e2 : τ

Γ ` let x = e1 in e2 : τ

(Also need to extend definition of substitution...)

Progress: If e is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange

Dan Grossman CSE505 Fall 2012, Lecture 11 4

Derived forms

let seems just like λ, so can make it a derived form

I let x = e1 in e2 “a macro” / “desugars to” (λx. e2) e1

I A “derived form”

(Harder if λ needs explicit type)

Or just define the semantics to replace let with λ:

let x = e1 in e2 → (λx. e2) e1

These 3 semantics are different in the state-sequence sense
(e1 → e2 → . . .→ en)

I But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and λ differently (later topic)
Note: Don’t desugar early if it hurts error messages!

Dan Grossman CSE505 Fall 2012, Lecture 11 5

Booleans and Conditionals

e ::= . . . | true | false | if e1 e2 e3
v ::= . . . | true | false
τ ::= . . . | bool

e1 → e′1
if e1 e2 e3 → if e′1 e2 e3

if true e2 e3 → e2 if false e2 e3 → e3

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 e2 e3 : τ

Γ ` true : bool Γ ` false : bool

Also extend definition of substitution (will stop writing that)...
Notes: CBN, new Canonical Forms case, all lemma cases easy

Dan Grossman CSE505 Fall 2012, Lecture 11 6

Pairs (CBV, left-right)

e ::= . . . | (e, e) | e.1 | e.2
v ::= . . . | (v, v)
τ ::= . . . | τ ∗ τ

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v1, e2)→ (v1, e

′
2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

(v1, v2).1→ v1 (v1, v2).2→ v2

Small-step can be a pain

I Large-step needs only 3 rules

I Will learn more concise notation later (evaluation contexts)

Dan Grossman CSE505 Fall 2012, Lecture 11 7

Pairs continued

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

Canonical Forms: If · ` v : τ1 ∗ τ2, then v has the form (v1, v2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result
directly

Dan Grossman CSE505 Fall 2012, Lecture 11 8

Records

Records are like n-ary tuples except with named fields
I Field names are not variables; they do not α-convert

e ::= . . . | {l1 = e1; . . . ; ln = en} | e.l
v ::= . . . | {l1 = v1; . . . ; ln = vn}
τ ::= . . . | {l1 : τ1; . . . ; ln : τn}

ei → e′i
{l1=v1, . . . , li−1=vi−1, li=ei, . . . , ln=en}
→ {l1=v1, . . . , li−1=vi−1, li=e

′
i, . . . , ln=en}

e→ e′

e.l→ e′.l

1 ≤ i ≤ n
{l1 = v1, . . . , ln = vn}.li → vi

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n
Γ ` e.li : τi

Dan Grossman CSE505 Fall 2012, Lecture 11 9

Records continued

Should we be allowed to reorder fields?

I · ` {l1 = 42; l2 = true} : {l2 : bool; l1 : int} ??

I Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many
languages disallow it

I Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Dan Grossman CSE505 Fall 2012, Lecture 11 10

Sums

What about ML-style datatypes:

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type ’a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types
I (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss

informally

Dan Grossman CSE505 Fall 2012, Lecture 11 11

Sums syntax and overview

e ::= . . . | A(e) | B(e) | match e with Ax. e | Bx. e
v ::= . . . | A(v) | B(v)
τ ::= . . . | τ1 + τ2

I Only two constructors: A and B

I All values of any sum type built from these constructors

I So A(e) can have any sum type allowed by e’s type

I No need to declare sum types in advance

I Like functions, will “guess the type” in our rules

Dan Grossman CSE505 Fall 2012, Lecture 11 12

Sums operational semantics

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ax. e1 | By. e2 → e2[v/y]

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

Dan Grossman CSE505 Fall 2012, Lecture 11 13

What is going on

Feel free to think about tagged values in your head:

I A tagged value is a pair of:
I A tag A or B (or 0 or 1 if you prefer)
I The (underlying) value

I A match:
I Checks the tag
I Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Dan Grossman CSE505 Fall 2012, Lecture 11 14

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Key ideas:

I For constructor-uses, “other side can be anything”
I For match, both sides need same type

I Don’t know which branch will be taken, just like an if.
I In fact, can drop explicit booleans and encode with sums:

E.g., bool = int + int, true = A(0), false = B(0)

Dan Grossman CSE505 Fall 2012, Lecture 11 15

Sums Type Safety

Canonical Forms: If · ` v : τ1 + τ2, then there exists a v1 such
that either v is A(v1) and · ` v1 : τ1 or v is B(v1) and
· ` v1 : τ2

I Progress for match v with Ax. e1 | By. e2 follows, as usual,
from Canonical Forms

I Preservation for match v with Ax. e1 | By. e2 follows from
the type of the underlying value and the Substitution Lemma

I The Substitution Lemma has new “hard” cases because we
have new binding occurrences

I But that’s all there is to it (plus lots of induction)

Dan Grossman CSE505 Fall 2012, Lecture 11 16

What are sums for?

I Pairs, structs, records, aggregates are fundamental
data-builders

I Sums are just as fundamental: “this or that not both”

I You have seen how OCaml does sums (datatypes)

I Worth showing how C and Java do the same thing
I A primitive in one language is an idiom in another

Dan Grossman CSE505 Fall 2012, Lecture 11 17

Sums in C

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in C:

struct t {

enum {A, B, C} tag;

union {t1 a; t2 b; t3 c;} data;

};

... switch(e->tag){ case A: t1 x=e->data.a; ...

I No static checking that tag is obeyed
I As fat as the fattest variant (avoidable with casts)

I Mutation costs us again!

Dan Grossman CSE505 Fall 2012, Lecture 11 18

Sums in Java

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}

class A extends t { t1 x; t4 m(){...}}

class B extends t { t2 x; t4 m(){...}}

class C extends t { t3 x; t4 m(){...}}

... e.m() ...

I A new method in t and subclasses for each match expression

I Supports extensibility via new variants (subclasses) instead of
extensibility via new operations (match expressions)

Dan Grossman CSE505 Fall 2012, Lecture 11 19

Pairs vs. Sums

You need both in your language

I With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

I Example: replace int + (int→ int) with
int ∗ (int ∗ (int→ int))

Pairs and sums are “logical duals” (more on that later)

I To make a τ1 ∗ τ2 you need a τ1 and a τ2
I To make a τ1 + τ2 you need a τ1 or a τ2
I Given a τ1 ∗ τ2, you can get a τ1 or a τ2 (or both; your

“choice”)

I Given a τ1 + τ2, you must be prepared for either a τ1 or τ2
(the value’s “choice”)

Dan Grossman CSE505 Fall 2012, Lecture 11 20

Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types
(b1, . . . , bn) and primitives (p1 : τ1, . . . , pn : τn). Examples:

I concat : string→string→string

I toInt : float→int

I “hello” : string

For each primitive, assume if applied to values of the right types it
produces a value of the right type

Together the types and assumed steps tell us how to type-check
and evaluate pi v1 . . . vn where pi is a primitive

We can prove soundness once and for all given the assumptions

Dan Grossman CSE505 Fall 2012, Lecture 11 21

Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our
lambda-calculus encoding won’t type-check, nor will any encoding
of equal expressive power

I So instead add an explicit construct for recursion

I You might be thinking let rec f x = e, but we will do
something more concise and general but less intuitive

e ::= . . . | fix e

e→ e′

fix e→ fix e′ fix λx. e→ e[fix λx. e/x]

No new values and no new types

Dan Grossman CSE505 Fall 2012, Lecture 11 22

Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our
lambda-calculus encoding won’t type-check, nor will any encoding
of equal expressive power

I So instead add an explicit construct for recursion

I You might be thinking let rec f x = e, but we will do
something more concise and general but less intuitive

e ::= . . . | fix e

e→ e′

fix e→ fix e′ fix λx. e→ e[fix λx. e/x]

No new values and no new types
Dan Grossman CSE505 Fall 2012, Lecture 11 22

Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

I Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1)))) 5

→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 5
→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 4)

→
...

Dan Grossman CSE505 Fall 2012, Lecture 11 23

Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

I Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1)))) 5
→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 5

→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 4)

→
...

Dan Grossman CSE505 Fall 2012, Lecture 11 23

Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

I Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1)))) 5
→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 5
→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))

→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 4)

→
...

Dan Grossman CSE505 Fall 2012, Lecture 11 23

Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

I Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1)))) 5
→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 5
→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))

→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 4)

→
...

Dan Grossman CSE505 Fall 2012, Lecture 11 23

Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

I Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1)))) 5
→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 5
→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 4)

→
...

Dan Grossman CSE505 Fall 2012, Lecture 11 23

Why called fix?

In math, a fix-point of a function g is an x such that g(x) = x

I This makes sense only if g has type τ → τ for some τ

I A particular g could have have 0, 1, 39, or infinity fix-points

I Examples for functions of type int→ int:

I λx. x+ 1 has no fix-points

I λx. x ∗ 0 has one fix-point

I λx. absolute value(x) has an infinite number of fix-points

I λx. if (x < 10 && x > 0) x 0 has 10 fix-points

Dan Grossman CSE505 Fall 2012, Lecture 11 24

Higher types

At higher types like (int→ int)→ (int→ int), the notion of
fix-point is exactly the same (but harder to think about)

I For what inputs f of type int→ int is g(f) = f

Examples:

I λf. λx. (f x) + 1 has no fix-points

I λf. λx. (f x) ∗ 0 (or just λf. λx. 0) has 1 fix-point
I The function that always returns 0
I In math, there is exactly one such function (cf. equivalence)

I λf. λx. absolute value(f x) has an infinite number of
fix-points: Any function that never returns a negative result

Dan Grossman CSE505 Fall 2012, Lecture 11 25

Back to factorial

Now, what are the fix-points of
λf. λx. if (x < 1) 1 (x ∗ (f(x− 1)))?

It turns out there is exactly one (in math): the factorial function!

And fix λf. λx. if (x < 1) 1 (x ∗ (f(x− 1))) behaves just
like the factorial function

I That is, it behaves just like the fix-point of
λf. λx. if (x < 1) 1 (x ∗ (f(x− 1)))

I In general, fix takes a function-taking-function and returns its
fix-point

(This isn’t necessarily important, but it explains the terminology
and shows that programming is deeply connected to mathematics)

Dan Grossman CSE505 Fall 2012, Lecture 11 26

Typing fix

Γ ` e : τ → τ

Γ ` fix e : τ

Math explanation: If e is a function from τ to τ , then fix e, the
fixed-point of e, is some τ with the fixed-point property

I So it’s something with type τ

Operational explanation: fix λx. e′ becomes e′[fix λx. e′/x]

I The substitution means x and fix λx. e′ need the same type

I The result means e′ and fix λx. e′ need the same type

Note: The τ in the typing rule is usually insantiated with a
function type

I e.g., τ1 → τ2, so e has type (τ1 → τ2)→ (τ1 → τ2)

Note: Proving soundness is straightforward!

Dan Grossman CSE505 Fall 2012, Lecture 11 27

General approach

We added let, booleans, pairs, records, sums, and fix

I let was syntactic sugar

I fix made us Turing-complete by “baking in” self-application

I The others added types

Whenever we add a new form of type τ there are:

I Introduction forms (ways to make values of type τ)

I Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim
forms”?

Dan Grossman CSE505 Fall 2012, Lecture 11 28

Anonymity

We added many forms of types, all unnamed a.k.a. structural.
Many real PLs have (all or mostly) named types:

I Java, C, C++: all record types (or similar) have names
I Omitting them just means compiler makes up a name

I OCaml sum types and record types have names

A never-ending debate:

I Structual types allow more code reuse: good

I Named types allow less code reuse: good

I Structural types allow generic type-based code: good

I Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Dan Grossman CSE505 Fall 2012, Lecture 11 29

Termination

Surprising fact: If · ` e : τ in STLC with all our additions except
fix, then there exists a v such that e→∗ v

I That is, all programs terminate

So termination is trivially decidable (the constant “yes” function),
so our language is not Turing-complete

The proof requires more advanced techniques than we have learned
so far because the size of expressions and typing derivations does
not decrease with each program step

I Could present it in about an hour if desired

Non-proof:

I Recursion in λ calculus requires some sort of self-application

I Easy fact: For all Γ, x, and τ , we cannot derive Γ ` x x : τ

Dan Grossman CSE505 Fall 2012, Lecture 11 30

