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Review

e ::= λx. e | x | e e | c
v ::= λx. e | c

τ ::= int | τ → τ
Γ ::= · | Γ, x : τ

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e[e′/x]: capture-avoiding substitution of e′ for free x in e

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Preservation: If · ` e : τ and e→ e′, then · ` e′ : τ .
Progress: If · ` e : τ , then e is a value or ∃ e′ such that e→ e′.
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Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

I Extend the syntax

I Extend the operational semantics
I Derived forms (syntactic sugar), or
I Direct semantics

I Extend the type system

I Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
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Let bindings (CBV)

e ::= . . . | let x = e1 in e2

e1 → e′1
let x=e1 in e2 → let x=e′1 in e2 let x=v in e→ e[v/x]

Γ ` e1 : τ ′ Γ, x : τ ′ ` e2 : τ

Γ ` let x = e1 in e2 : τ

(Also need to extend definition of substitution...)

Progress: If e is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange
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Derived forms

let seems just like λ, so can make it a derived form

I let x = e1 in e2 “a macro” / “desugars to” (λx. e2) e1

I A “derived form”

(Harder if λ needs explicit type)

Or just define the semantics to replace let with λ:

let x = e1 in e2 → (λx. e2) e1

These 3 semantics are different in the state-sequence sense
(e1 → e2 → . . .→ en)

I But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and λ differently (later topic)
Note: Don’t desugar early if it hurts error messages!
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Booleans and Conditionals

e ::= . . . | true | false | if e1 e2 e3
v ::= . . . | true | false
τ ::= . . . | bool

e1 → e′1
if e1 e2 e3 → if e′1 e2 e3

if true e2 e3 → e2 if false e2 e3 → e3

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 e2 e3 : τ

Γ ` true : bool Γ ` false : bool

Also extend definition of substitution (will stop writing that)...
Notes: CBN, new Canonical Forms case, all lemma cases easy
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Pairs (CBV, left-right)

e ::= . . . | (e, e) | e.1 | e.2
v ::= . . . | (v, v)
τ ::= . . . | τ ∗ τ

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v1, e2)→ (v1, e

′
2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

(v1, v2).1→ v1 (v1, v2).2→ v2

Small-step can be a pain

I Large-step needs only 3 rules

I Will learn more concise notation later (evaluation contexts)
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Pairs continued

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

Canonical Forms: If · ` v : τ1 ∗ τ2, then v has the form (v1, v2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result
directly
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Records

Records are like n-ary tuples except with named fields
I Field names are not variables; they do not α-convert

e ::= . . . | {l1 = e1; . . . ; ln = en} | e.l
v ::= . . . | {l1 = v1; . . . ; ln = vn}
τ ::= . . . | {l1 : τ1; . . . ; ln : τn}

ei → e′i
{l1=v1, . . . , li−1=vi−1, li=ei, . . . , ln=en}
→ {l1=v1, . . . , li−1=vi−1, li=e

′
i, . . . , ln=en}

e→ e′

e.l→ e′.l

1 ≤ i ≤ n
{l1 = v1, . . . , ln = vn}.li → vi

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n
Γ ` e.li : τi
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Records continued

Should we be allowed to reorder fields?

I · ` {l1 = 42; l2 = true} : {l2 : bool; l1 : int} ??

I Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many
languages disallow it

I Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping
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Sums

What about ML-style datatypes:

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type ’a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types
I (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss

informally
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Sums syntax and overview

e ::= . . . | A(e) | B(e) | match e with Ax. e | Bx. e
v ::= . . . | A(v) | B(v)
τ ::= . . . | τ1 + τ2

I Only two constructors: A and B

I All values of any sum type built from these constructors

I So A(e) can have any sum type allowed by e’s type

I No need to declare sum types in advance

I Like functions, will “guess the type” in our rules
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Sums operational semantics

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ax. e1 | By. e2 → e2[v/y]

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)
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What is going on

Feel free to think about tagged values in your head:

I A tagged value is a pair of:
I A tag A or B (or 0 or 1 if you prefer)
I The (underlying) value

I A match:
I Checks the tag
I Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2
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Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Key ideas:

I For constructor-uses, “other side can be anything”
I For match, both sides need same type

I Don’t know which branch will be taken, just like an if.
I In fact, can drop explicit booleans and encode with sums:

E.g., bool = int + int, true = A(0), false = B(0)
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Sums Type Safety

Canonical Forms: If · ` v : τ1 + τ2, then there exists a v1 such
that either v is A(v1) and · ` v1 : τ1 or v is B(v1) and
· ` v1 : τ2

I Progress for match v with Ax. e1 | By. e2 follows, as usual,
from Canonical Forms

I Preservation for match v with Ax. e1 | By. e2 follows from
the type of the underlying value and the Substitution Lemma

I The Substitution Lemma has new “hard” cases because we
have new binding occurrences

I But that’s all there is to it (plus lots of induction)
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What are sums for?

I Pairs, structs, records, aggregates are fundamental
data-builders

I Sums are just as fundamental: “this or that not both”

I You have seen how OCaml does sums (datatypes)

I Worth showing how C and Java do the same thing
I A primitive in one language is an idiom in another
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Sums in C

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in C:

struct t {

enum {A, B, C} tag;

union {t1 a; t2 b; t3 c;} data;

};

... switch(e->tag){ case A: t1 x=e->data.a; ...

I No static checking that tag is obeyed
I As fat as the fattest variant (avoidable with casts)

I Mutation costs us again!
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Sums in Java

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}

class A extends t { t1 x; t4 m(){...}}

class B extends t { t2 x; t4 m(){...}}

class C extends t { t3 x; t4 m(){...}}

... e.m() ...

I A new method in t and subclasses for each match expression

I Supports extensibility via new variants (subclasses) instead of
extensibility via new operations (match expressions)
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Pairs vs. Sums

You need both in your language

I With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

I Example: replace int + (int→ int) with
int ∗ (int ∗ (int→ int))

Pairs and sums are “logical duals” (more on that later)

I To make a τ1 ∗ τ2 you need a τ1 and a τ2
I To make a τ1 + τ2 you need a τ1 or a τ2
I Given a τ1 ∗ τ2, you can get a τ1 or a τ2 (or both; your

“choice”)

I Given a τ1 + τ2, you must be prepared for either a τ1 or τ2
(the value’s “choice”)
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Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types
(b1, . . . , bn) and primitives (p1 : τ1, . . . , pn : τn). Examples:

I concat : string→string→string

I toInt : float→int

I “hello” : string

For each primitive, assume if applied to values of the right types it
produces a value of the right type

Together the types and assumed steps tell us how to type-check
and evaluate pi v1 . . . vn where pi is a primitive

We can prove soundness once and for all given the assumptions
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Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our
lambda-calculus encoding won’t type-check, nor will any encoding
of equal expressive power

I So instead add an explicit construct for recursion

I You might be thinking let rec f x = e, but we will do
something more concise and general but less intuitive

e ::= . . . | fix e

e→ e′

fix e→ fix e′ fix λx. e→ e[fix λx. e/x]

No new values and no new types
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Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

I Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1)))) 5

→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 5
→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 4)

→
...
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Why called fix?

In math, a fix-point of a function g is an x such that g(x) = x

I This makes sense only if g has type τ → τ for some τ

I A particular g could have have 0, 1, 39, or infinity fix-points

I Examples for functions of type int→ int:

I λx. x+ 1 has no fix-points

I λx. x ∗ 0 has one fix-point

I λx. absolute value(x) has an infinite number of fix-points

I λx. if (x < 10 && x > 0) x 0 has 10 fix-points
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Higher types

At higher types like (int→ int)→ (int→ int), the notion of
fix-point is exactly the same (but harder to think about)

I For what inputs f of type int→ int is g(f) = f

Examples:

I λf. λx. (f x) + 1 has no fix-points

I λf. λx. (f x) ∗ 0 (or just λf. λx. 0) has 1 fix-point
I The function that always returns 0
I In math, there is exactly one such function (cf. equivalence)

I λf. λx. absolute value(f x) has an infinite number of
fix-points: Any function that never returns a negative result
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Back to factorial

Now, what are the fix-points of
λf. λx. if (x < 1) 1 (x ∗ (f(x− 1)))?

It turns out there is exactly one (in math): the factorial function!

And fix λf. λx. if (x < 1) 1 (x ∗ (f(x− 1))) behaves just
like the factorial function

I That is, it behaves just like the fix-point of
λf. λx. if (x < 1) 1 (x ∗ (f(x− 1)))

I In general, fix takes a function-taking-function and returns its
fix-point

(This isn’t necessarily important, but it explains the terminology
and shows that programming is deeply connected to mathematics)
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Typing fix

Γ ` e : τ → τ

Γ ` fix e : τ

Math explanation: If e is a function from τ to τ , then fix e, the
fixed-point of e, is some τ with the fixed-point property

I So it’s something with type τ

Operational explanation: fix λx. e′ becomes e′[fix λx. e′/x]

I The substitution means x and fix λx. e′ need the same type

I The result means e′ and fix λx. e′ need the same type

Note: The τ in the typing rule is usually insantiated with a
function type

I e.g., τ1 → τ2, so e has type (τ1 → τ2)→ (τ1 → τ2)

Note: Proving soundness is straightforward!
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General approach

We added let, booleans, pairs, records, sums, and fix

I let was syntactic sugar

I fix made us Turing-complete by “baking in” self-application

I The others added types

Whenever we add a new form of type τ there are:

I Introduction forms (ways to make values of type τ )

I Elimination forms (ways to use values of type τ )

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim
forms”?
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Anonymity

We added many forms of types, all unnamed a.k.a. structural.
Many real PLs have (all or mostly) named types:

I Java, C, C++: all record types (or similar) have names
I Omitting them just means compiler makes up a name

I OCaml sum types and record types have names

A never-ending debate:

I Structual types allow more code reuse: good

I Named types allow less code reuse: good

I Structural types allow generic type-based code: good

I Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types
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Termination

Surprising fact: If · ` e : τ in STLC with all our additions except
fix, then there exists a v such that e→∗ v

I That is, all programs terminate

So termination is trivially decidable (the constant “yes” function),
so our language is not Turing-complete

The proof requires more advanced techniques than we have learned
so far because the size of expressions and typing derivations does
not decrease with each program step

I Could present it in about an hour if desired

Non-proof:

I Recursion in λ calculus requires some sort of self-application

I Easy fact: For all Γ, x, and τ , we cannot derive Γ ` x x : τ
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