
CSE505: Graduate Programming Languages

Lecture 19 —
Types for OOP;

Static Overloading and Multimethods

Dan Grossman
Fall 2012



So far. . .

Last lecture (among other things):

I The difference between OOP and “records of functions with
shared private state” is dynamic-dispatch (a.k.a. late-binding)
of self

I (Informally) defined method-lookup to implement
dynamic-dispatch correctly: use run-time tags or code-pointers

Now:

I Purpose of static typing for (pure) OOP

I Subtyping and contrasting it with subclassing

I Static overloading

I Multimethods

Dan Grossman CSE505 Fall 2012, Lecture 19 2



Type-Safety in OOP

Remember the two main goals we had with static type systems:
I Prevent “getting stuck” which is how we encode

language-level errors in our operational semantics
I Without rejecting too many useful programs

I Enforce abstractions so programmers can hide application-level
things and enforce invariants, preconditions, etc.

I Subtyping and parametric polymorphism do this in
complementary ways, assuming no downcasts or other run-time
type tests

Pure OOP has only method calls (and field accesses)

I A method-lookup is stuck if receiver has no method with right
name/arity (no match)

I (If we add overloading,) a method-lookup is stuck if receiver
has no “best” method (no best match)

Dan Grossman CSE505 Fall 2012, Lecture 19 3



Structural or Nominal

A straightforward structural type system for OOP would be like
our type system with record types and function types

I An object type lists the methods that objects of that type
have, plus the the types of the argument(s) and result(s) for
each method

I Sound subtyping just as we learned
I Width, permutation, and depth for object types
I Contravariant arguments and covariant result for each method

type in an object type

A nominal type system could give named types and explicit
subtyping relationships

I Allow a subset of the subtyping (therefore sound) of the
structural system (see lecture 11 for plusses/minuses)

I Common to reuse class names as type names and require
subclasses to be subtypes...

Dan Grossman CSE505 Fall 2012, Lecture 19 4



Subclassing is Subtyping

Statically typed OOP languages often purposely “confuse” classes
and types: C is a class and a type and if C extends D then C is a
subtype of D

Therefore, if C overrides m, the type of m in C must be a subtype
of the type of m in D

Just like functions, method subtyping allows contravariant
arguments and covariant results

I If code knows it has a C, it can call methods with “more”
arguments and know there are “fewer” results

Dan Grossman CSE505 Fall 2012, Lecture 19 5



Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking self as
an argument

But unlike other arguments, self is covariant!!

I Else overriding method couldn’t access new fields/methods

I Sound because self must be passed, not another value with
the supertype

This is the key reason encoding OOP in a typed λ-calculus
requires ingenuity, fancy types, and/or run-time cost

Dan Grossman CSE505 Fall 2012, Lecture 19 6



More subtyping

With single-inheritance and the class/type confusion, we don’t get
all the subtyping we want

I Example: Taking any object that has an m method from int

to int

Interfaces help somewhat, but class declarations must still say they
implement an interface

I An interface is just a named type independent of the class
hierarchy

Dan Grossman CSE505 Fall 2012, Lecture 19 7



Why subsume?

Subsuming to a supertype allows reusing code expecting the
supertype

It also allows hiding if you don’t have downcasts, etc. Example:

interface I { int distance(Point1 p); }

class Point1 implements I { ... I f() { self } ... }

But again objects are awkward for many binary methods

I distance takes a Point1, not an I

Dan Grossman CSE505 Fall 2012, Lecture 19 8



More subclassing

Breaking one direction of “subclassing = subtyping” allowed more
subtyping (so more code reuse and/or information hiding)

Breaking the other direction (“subclassing does not imply
subtyping”) allows more inheritance (so more code reuse)

Simple idea: If C extends D and overrides a method in a way that
makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ... Int get_x(); Bool compare(P1); ... }

class P2 extends P1 { ... Bool compare(P2); ... }

But this is not always correct...

Dan Grossman CSE505 Fall 2012, Lecture 19 9



Subclass not a subtype

class P1 {

Int x;

Int get_x() { x }

Bool compare(P1 p) { self.get_x() == p.get_x() }

}

class P2 extends P1 {

Int y;

Int get_y() { y }

Bool compare(P2 p) { self.get_x() == p.get_x() &&

self.get_y() == p.get_y() }

}

I As expected, P2≤P1 is unsound (assuming compare in P2 is
overriding unlike in Java or C++)

Dan Grossman CSE505 Fall 2012, Lecture 19 10



Subclass not a subtype

I Can still inherit implementation (need not reimplement
get_x)

I We cannot always do this: what if get_x called
self.compare? Possible solutions:

I Re-typecheck get_x in subclass
I Use a “Really Fancy Type System”

There may be little use in allowing subclassing that is not subtyping

Dan Grossman CSE505 Fall 2012, Lecture 19 11



Summary of subclass vs. subtype

Separating types and classes expands the language, but clarifies
the concepts:

I Typing is about interfaces, subtyping about broader interfaces

I Subclassing is about inheritance and code-sharing

Combining typing and inheritance restricts both

I Most OOP languages purposely confuse subtyping (about
type-checking) and inheritance (about code-sharing), which is
reasonable in practice

I But please use subclass to talk about inheritance and subtype
to talk about static checking

Dan Grossman CSE505 Fall 2012, Lecture 19 12



Static Overloading

So far, we have assumed every method had a different name

I Same name implied overriding and required a subtype

Many OOP languages allow the same name for different methods
with different argument types:

A f(B x) { ... }

C f(D x, E y) { ... }

F f(G x, H z) { ... }

Complicates definition of method-lookup for e1.m(e2,...,en)

Previously, we had dynamic-dispatch on e1: method-lookup a
function of the class of the object e1 evaluates to (at run-time)

We now have static overloading: Method-lookup is also a function
of the types of e2,...,en (at compile-time)

Dan Grossman CSE505 Fall 2012, Lecture 19 13



Static Overloading Continued

Because of subtyping, multiple methods can match a call!

“Best-match” can be roughly “Subsume fewest arguments. For a
tie, allow subsumption to immediate supertypes and recur”

Ambiguities remain (no best match):

I A f(B) vs. C f(B) (usually rejected)

I A f(I) vs. A f(J) for f(e) where e has type T , T ≤ I,
T ≤ J and I,J are incomparable (possible with multiple
interfaces or multiple inheritance)

I A f(B,C) vs. A f(C,B) for f(e1,e2) where B ≤ C, and
e1 and e2 have type B

Type systems often reject ambiguous calls or use ad hoc rules to
give a best match (e.g., “left-argument precedence”)

Dan Grossman CSE505 Fall 2012, Lecture 19 14



Multiple Dispatch

Static overloading saves keystrokes from shorter method-names

I We know the compile-time types of arguments at each
call-site, so we could call methods with different names

Multiple (dynamic) dispatch (a.k.a. multimethods) is more
interesting: Method-lookup a function of the run-time types of
arguments

It’s a natural generalization: the “receiver” argument is no longer
treated differently!

So e1.m(e2,...,en) is just sugar for m(e1,e2,...,en)

I It wasn’t before, e.g., when e1 is self and may be a subtype

Dan Grossman CSE505 Fall 2012, Lecture 19 15



Example

class A { int f; }

class B extends A { int g; }

Bool compare(A x, A y) { x.f == y.f }

Bool compare(B x, B y) { x.f == y.f && x.g == y.g }

Bool f(A x, A y, A z) { compare(x,y) && compare(y,z) }

Neat: late-binding for both arguments to compare (choose second
method if both arguments are subtypes of B, else first method)

With power comes danger. Tricky question: Can we add “&&
compare(x,z)” to body of f and have an equivalent function?

I With static overloading?

I With multiple dispatch?

Dan Grossman CSE505 Fall 2012, Lecture 19 16



Pragmatics

Not clear where multimethods should be defined

I No longer “belong to a class” because receiver isn’t special

Multimethods are “more OOP” because dynamic dispatch is the
essence of OOP

Multimethods are “less OOP” because without a distinguished
receiver the analogy to physical objects is reduced

Nice paper in OOPSLA08: “Multiple Dispatch in Practice”

Dan Grossman CSE505 Fall 2012, Lecture 19 17



Revenge of Ambiguity

The “no best match” issues with static overloading exist with
multimethods and ambiguities arise at run-time

It’s undecidable if “no best match” will happen:

// B <= C

A f(B,C) {...}

A f(C,B) {...}

unit g(C a, C b) { f(a,b); /* may be ambiguous */ }

Possible solutions:

I Raise exception when no best match

I Define “best match” such that it always exists

I A conservative type system to reject programs that might
have a “no best match” error when run

Dan Grossman CSE505 Fall 2012, Lecture 19 18


