CSE505: Graduate Programming Languages

Lecture 2 - Syntax

Dan Grossman
Fall 2012

Finally, some formal PL content

For our first formal language, let's leave out functions, objects, records, threads, exceptions, ...

What's left: integers, mutable variables, control-flow
(Abstract) syntax using a common metalanguage:
"A program is a statement s, which is defined as follows"

$$
\begin{aligned}
s & ::=\text { skip }|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
e & ::=c|x| e+e \mid e * e \\
(c & \in\{\ldots,-2,-1,0,1,2, \ldots\}) \\
(x & \left.\in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \ldots\right\}\right)
\end{aligned}
$$

Examples

$s::=\operatorname{skip}|x:=e| s ; s \mid$ if $e s s \mid$ while $e s$
$e::=c|x| e+e \mid e * e$

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings
That can be ambiguous: if x skip $\mathrm{y}:=42 ; \mathrm{x}:=\mathrm{y}$
Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

- Trees are our "truth" with strings as a "convenient notation"
if x skip ($\mathrm{y}:=42 ; \mathrm{x}:=\mathrm{y}$) versus (if x skip $\mathrm{y}:=42$) ; $\mathrm{x}:=\mathrm{y}$

Last word on concrete syntax

Converting a string into a tree is parsing
Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design

- Always trivial if you require enough parentheses or keywords
- Extreme case: LISP, 1960s; Scheme, 1970s
- Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it's ever unclear what tree we mean

Inductive definition

$$
\begin{aligned}
& s::=\text { skip }|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
& e:=c|x| e+e \mid e * e
\end{aligned}
$$

This grammar is a finite description of an infinite set of trees
The apparent self-reference is not a problem, provided the definition uses well-founded induction

- Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation \& avoid circularity:

- Let $\boldsymbol{E}_{0}=\emptyset$
- For $\boldsymbol{i}>\mathbf{0}$, let $\boldsymbol{E}_{\boldsymbol{i}}$ be $\boldsymbol{E}_{\boldsymbol{i}-\mathbf{1}}$ union "expressions of the form \boldsymbol{c}, $x, e_{1}+e_{2}$, or $e_{1} * e_{2}$ where $e_{1}, e_{2} \in E_{i-1}$ "
- Let $\boldsymbol{E}=\bigcup_{i \geq 0} \boldsymbol{E}_{\boldsymbol{i}}$

The set \boldsymbol{E} is what we mean by our compact metanotation

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let's get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

- Let $\boldsymbol{E}_{0}=\emptyset$.
- For $\boldsymbol{i}>\mathbf{0}$, let $\boldsymbol{E}_{\boldsymbol{i}}$ be $\boldsymbol{E}_{\boldsymbol{i - 1}}$ union "expressions of the form \boldsymbol{c}, $x, e_{1}+e_{2}$, or $e_{1} * e_{2}$ where $e_{1}, e_{2} \in E_{i-1}$ ".
- Let $\boldsymbol{E}=\bigcup_{i \geq 0} \boldsymbol{E}_{i}$.

The set \boldsymbol{E} is what we mean by our compact metanotation
To get it: What set is $\boldsymbol{E}_{\mathbf{1}}$? $\boldsymbol{E}_{\mathbf{2}}$?
Could explain statements the same way: What is \boldsymbol{S}_{1} ? \boldsymbol{S}_{2} ? S ?

Our Second Theorem

All expressions have at least one constant or variable.
Pedantic proof: By induction on \boldsymbol{i}, for all $e \in \boldsymbol{E}_{i}, e$ has $\geq \mathbf{1}$ constant or variable.

- Base: $\boldsymbol{i}=\mathbf{0}$ implies $\boldsymbol{E}_{\boldsymbol{i}}=\emptyset$
- Inductive: $\boldsymbol{i}>\mathbf{0}$. Consider arbitrary $\boldsymbol{e} \in \boldsymbol{E}_{\boldsymbol{i}}$ by cases:
- $e \in E_{i-1} \ldots$
- $e=c \ldots$
- $e=x \ldots$
- $e=e_{1}+e_{2}$ where $e_{1}, e_{2} \in E_{i-1} \ldots$
- $e=e_{1} * e_{2}$ where $e_{1}, e_{2} \in E_{i-1} \ldots$

A "Better" Proof

All expressions have at least one constant or variable.
PL-style proof: By structural induction on (rules for forming an expression) e. Cases:

- c...
- \boldsymbol{x}...
- $e_{1}+e_{2} \ldots$
- $e_{1} * e_{2}$..

Structural induction invokes the induction hypothesis on smaller terms. It is equivalent to the pedantic proof, and more convenient in PL

