CSE505: Graduate Programming Languages

Lecture 3 - Operational Semantics

Dan Grossman

Fall 2012

Where we are

- Done: OCaml tutorial, "IMP" syntax, structural induction
- Now: Operational semantics for our little "IMP" language
- Most of what you need for Homework 1
- (But Problem 4 requires proofs over semantics)

Review

IMP's abstract syntax is defined inductively:

$$
\begin{aligned}
s & ::=\operatorname{skip}|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
e & ::=c|x| e+e \mid e * e \\
(c & \in\{\ldots,-2,-1,0,1,2, \ldots\}) \\
(x & \left.\in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \ldots\right\}\right)
\end{aligned}
$$

We haven't yet said what programs mean! (Syntax is boring)
Encode our "social understanding" about variables and control flow

Outline

- Semantics for expressions

1. Informal idea; the need for heaps
2. Definition of heaps
3. The evaluation judgment (a relation form)
4. The evaluation inference rules (the relation definition)
5. Using inference rules

- Derivation trees as interpreters
- Or as proofs about expressions

6. Metatheory: Proofs about the semantics

- Then semantics for statements
- ...

Informal idea

Given e, what c does e evaluate to?
$1+2$
$x+2$

Informal idea

Given e, what c does e evaluate to?

$$
1+2 \quad x+2
$$

It depends on the values of variables (of course)

Use a heap \boldsymbol{H} for a total function from variables to constants

- Could use partial functions, but then $\exists \boldsymbol{H}$ and \boldsymbol{e} for which there is no \boldsymbol{c}

We'll define a relation over triples of $\boldsymbol{H}, \boldsymbol{e}$, and \boldsymbol{c}

- Will turn out to be function if we view \boldsymbol{H} and \boldsymbol{e} as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

Heaps

$$
H::=\cdot \mid H, x \mapsto c
$$

A lookup-function for heaps:

$$
\boldsymbol{H}(\boldsymbol{x})=\left\{\begin{array}{rll}
\boldsymbol{c} & \text { if } \boldsymbol{H}=\boldsymbol{H}^{\prime}, \boldsymbol{x} \mapsto \boldsymbol{c} \\
\boldsymbol{H}^{\prime}(\boldsymbol{x}) & \text { if } \boldsymbol{H}=\boldsymbol{H}^{\prime}, \boldsymbol{y} \mapsto \boldsymbol{c}^{\prime} \text { and } \boldsymbol{y} \neq \boldsymbol{x} \\
0 & \text { if } \boldsymbol{H}=.
\end{array}\right.
$$

- Last case avoids "errors" (makes function total)
"What heap to use" will arise in the semantics of statements
- For expression evaluation, "we are given an H"

The judgment

We will write:

$$
H ; e \Downarrow c
$$

to mean, " \boldsymbol{e} evaluates to \boldsymbol{c} under heap \boldsymbol{H} "
It is just a relation on triples of the form $(\boldsymbol{H}, \boldsymbol{e}, \boldsymbol{c})$
We just made up metasyntax $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ to follow PL convention and to distinguish it from other relations

We can write: ., $\boldsymbol{x} \mapsto \mathbf{3} ; \boldsymbol{x}+\boldsymbol{y} \Downarrow \mathbf{3}$, which will turn out to be true
(this triple will be in the relation we define)
Or: ., $\boldsymbol{x} \mapsto \mathbf{3} ; \boldsymbol{x}+\boldsymbol{y} \Downarrow 6$, which will turn out to be false (this triple will not be in the relation we define)

Inference rules

$\overline{\text { CONST }} \overline{\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}}$

ADD
$\frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}}$

VAR
$\boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$

MULT
$\frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1} * e_{2} \Downarrow c_{1} * c_{2}}$

Top: hypotheses
Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you "instantiate consistently"

- So rules "work" "for all" $\boldsymbol{H}, \boldsymbol{c}, \boldsymbol{e}_{1}$, etc.
- But "each" $\boldsymbol{e}_{\mathbf{1}}$ has to be the "same" expression

Instantiating rules

Example instantiation:

$$
\frac{\cdot, \mathrm{y} \mapsto 4 ; 3+\mathrm{y} \Downarrow 7 \quad \cdot, \mathrm{y} \mapsto 4 ; 5 \Downarrow 5}{\cdot, \mathrm{y} \mapsto 4 ;(3+\mathrm{y})+5 \Downarrow 12}
$$

Instantiates:

$$
\frac{\stackrel{\mathrm{ADD}}{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}}{H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}}
$$

with

$$
\begin{aligned}
& H=\cdot, \mathrm{y} \mapsto 4 \\
& e_{1}=(3+\mathrm{y}) \\
& c_{1}=7 \\
& e_{2}=5 \\
& c_{2}=5
\end{aligned}
$$

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:
$\overline{\cdot, \mathrm{y} \mapsto 4 ; 3 \Downarrow 3} \quad \overline{\cdot, \mathrm{y} \mapsto 4 ; \mathrm{y} \Downarrow 4}$
$\cdot, \mathrm{y} \mapsto 4 ; 3+\mathrm{y} \Downarrow 7$
$\cdot, \mathrm{y} \mapsto 4 ;(3+\mathrm{y})+5 \Downarrow 12$

By definition, $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ if there exists a derivation with $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ at the root

Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) $\boldsymbol{R}_{\mathbf{0}}$
- Let $\boldsymbol{R}_{\boldsymbol{i}}$ be $\boldsymbol{R}_{\boldsymbol{i - 1}}$ union all $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ such that we can instantiate some inference rule to have conclusion $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and all hypotheses in $\boldsymbol{R}_{\boldsymbol{i - 1}}$
- So $\boldsymbol{R}_{\boldsymbol{i}}$ is all triples at the bottom of height- \boldsymbol{j} complete derivations for $\boldsymbol{j} \leq \boldsymbol{i}$
- \boldsymbol{R}_{∞} is the relation we defined
- All triples at the bottom of complete derivations

For the math folks: \boldsymbol{R}_{∞} is the smallest relation closed under the inference rules

What are these things?

We can view the inference rules as defining an interpreter

- Complete derivation shows recursive calls to the "evaluate expression" function
- Recursive calls from conclusion to hypotheses
- Syntax-directed means the interpreter need not "search"
- See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
- Facts established from hypotheses to conclusions

Some theorems

- Progress: For all \boldsymbol{H} and \boldsymbol{e}, there exists a \boldsymbol{c} such that $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$
- Determinacy: For all \boldsymbol{H} and \boldsymbol{e}, there is at most one \boldsymbol{c} such that $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$

We rigged it that way... what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression \boldsymbol{e}

On to statements

A statement doesn't produce a constant

On to statements

A statement doesn't produce a constant

It produces a new, possibly-different heap

- If it terminates

On to statements

A statement doesn't produce a constant

It produces a new, possibly-different heap

- If it terminates

We could define $\boldsymbol{H}_{\mathbf{1}} ; \boldsymbol{s} \Downarrow \boldsymbol{H}_{\mathbf{2}}$

- Would be a partial function from $\boldsymbol{H}_{\mathbf{1}}$ and \boldsymbol{s} to $\boldsymbol{H}_{\mathbf{2}}$
- Works fine; could be a homework problem

On to statements

A statement doesn't produce a constant

It produces a new, possibly-different heap

- If it terminates

We could define $\boldsymbol{H}_{\mathbf{1}} ; \boldsymbol{s} \Downarrow \boldsymbol{H}_{\mathbf{2}}$

- Would be a partial function from \boldsymbol{H}_{1} and s to \boldsymbol{H}_{2}
- Works fine; could be a homework problem

Instead we'll define a "small-step" semantics and then "iterate" to "run the program"

$$
H_{1} ; s_{1} \rightarrow H_{2} ; s_{2}
$$

Statement semantics

```
H1; s1 }->\mp@subsup{H}{2}{\prime};\mp@subsup{s}{2}{
```

ASSIGN

$$
\frac{H ; e \Downarrow c}{H ; x:=e \rightarrow H, x \mapsto c ; \text { skip }}
$$

IF1
$\frac{H ; e \Downarrow c \quad c>0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{1}}$

SEQ2
$\frac{H ; s_{1} \rightarrow H^{\prime} ; s_{1}^{\prime}}{H ; s_{1} ; s_{2} \rightarrow H^{\prime} ; s_{1}^{\prime} ; s_{2}}$
IF2
$H ; e \Downarrow c \quad c \leq 0$
$H ;$ if $e s_{1} s_{2} \rightarrow H ; s_{2}$

Statement semantics cont'd

What about while es (do s and loop if $e>0$)?

Statement semantics cont'd

What about while es (do s and loop if $e>0$)?

WHILE
H; while $e s \rightarrow H$; if $e(s$; while $e s)$ skip
Many other equivalent definitions possible

Program semantics

Defined $\boldsymbol{H} ; s \rightarrow \boldsymbol{H}^{\prime} ; s^{\prime}$, but what does " s " mean/do?
Our machine iterates: $\boldsymbol{H}_{\mathbf{1}} ; \boldsymbol{s}_{\mathbf{1}} \rightarrow \boldsymbol{H}_{\mathbf{2}} ; \boldsymbol{s}_{\mathbf{2}} \rightarrow \boldsymbol{H}_{\mathbf{3}} ; \boldsymbol{s}_{\mathbf{3}} \ldots$, with each step justified by a complete derivation using our single-step statement semantics

Let $\boldsymbol{H}_{\mathbf{1}} ; \boldsymbol{s}_{\mathbf{1}} \rightarrow^{\boldsymbol{n}} \boldsymbol{H}_{\mathbf{2}} ; \boldsymbol{s}_{\mathbf{2}}$ mean "becomes after n steps"
Let $\boldsymbol{H}_{\mathbf{1}} ; \boldsymbol{s}_{\mathbf{1}} \rightarrow^{*} \boldsymbol{H}_{\mathbf{2}} ; \boldsymbol{s}_{\mathbf{2}}$ mean "becomes after 0 or more steps"
Pick a special "answer" variable ans
The program s produces \boldsymbol{c} if $\cdot ; \boldsymbol{s} \rightarrow^{*} \boldsymbol{H} ;$ skip and $\boldsymbol{H}(\mathrm{ans})=\boldsymbol{c}$
Does every s produce a \boldsymbol{c} ?

Example program execution

$\mathrm{x}:=3 ;(\mathrm{y}:=1$; while $\mathrm{x}(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1))$
Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$.

Example program execution

$\mathrm{x}:=3 ;(\mathrm{y}:=1$; while $\mathrm{x}(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1))$
Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$.
$\cdot ; \mathrm{x}:=3 ; \mathrm{y}:=1$; while $\mathrm{x} s$

Example program execution

$\mathrm{x}:=3 ;(\mathrm{y}:=1$; while $\mathrm{x}(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1))$
Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$.

- $\mathrm{x}:=3$; y $:=1$; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ;$ skip $; \mathrm{y}:=1 ;$ while $\mathrm{x} s$

Example program execution

$\mathrm{x}:=3 ;(\mathrm{y}:=1$; while $\mathrm{x}(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1))$
Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$.
; x : = 3 ; y := 1 ; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ;$ skip $; \mathrm{y}:=1$; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ; \mathrm{y}:=1 ;$ while $\mathrm{x} s$

Example program execution

$\mathrm{x}:=3 ;(\mathrm{y}:=1$; while $\mathrm{x}(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1))$
Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$.
; x : = 3 ; y := 1 ; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ;$ skip $; \mathrm{y}:=1 ;$ while $\times s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ; \mathrm{y}:=1$; while $\mathrm{x} s$
$\rightarrow^{2} \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1$; while $\mathrm{x} s$

Example program execution

$\mathrm{x}:=3 ;(\mathrm{y}:=1$; while $\mathrm{x}(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1))$
Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$.
; x : = 3 ; y := 1 ; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ;$ skip $; \mathrm{y}:=1$; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ; \mathrm{y}:=1 ;$ while $\mathrm{x} s$
$\rightarrow^{2} \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1$; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1$; if $\mathrm{x}(s ;$ while $\times s)$ skip

Example program execution

$\mathrm{x}:=3 ;(\mathrm{y}:=1 ;$ while $\mathrm{x}(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1))$
Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$.
$\cdot ; \mathrm{x}:=3 ; \mathrm{y}:=1$; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3$; skip; y $:=1$; while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3 ; \mathrm{y}:=1$; while $\mathrm{x} s$
$\rightarrow^{2} \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1 ;$ while $\mathrm{x} s$
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1$; if $\mathrm{x}(s ;$ while $\times s)$ skip
$\rightarrow \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1 ; \mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1$; while $\mathrm{x} s$

Continued...

$\rightarrow^{2} \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3 ; \mathrm{x}:=\mathrm{x}-1$; while $\mathrm{x} s$

Continued...

$$
\begin{aligned}
& \rightarrow^{2} \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3 ; \mathrm{x}:=\mathrm{x}-1 ; \text { while } \mathrm{x} s \\
& \rightarrow^{2} \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3, \mathrm{x} \mapsto 2 ; \text { while } \mathrm{x} s
\end{aligned}
$$

Continued...

$$
\begin{aligned}
& \rightarrow^{2} \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3 ; \mathrm{x}:=\mathrm{x}-1 ; \text { while } \mathrm{x} s \\
& \rightarrow^{2} \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3, \mathrm{x} \mapsto 2 ; \text { while } \mathrm{x} s \\
& \rightarrow \quad \ldots, \mathrm{y} \mapsto 3, \mathrm{x} \mapsto 2 ; \text { if } \mathrm{x}(s ; \text { while } \mathrm{x} s) \text { skip }
\end{aligned}
$$

Continued...

$$
\begin{aligned}
& \rightarrow^{2} \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3 ; \mathrm{x}:=\mathrm{x}-1 ; \text { while } \mathrm{x} s \\
& \rightarrow^{2} \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3, \mathrm{x} \mapsto 2 ; \text { while } \mathrm{x} s \\
& \rightarrow \quad \ldots, \mathrm{y} \mapsto 3, \mathrm{x} \mapsto 2 ; \text { if } \mathrm{x}(s ; \text { while } \mathrm{x} s) \text { skip }
\end{aligned}
$$

Continued...

$$
\begin{aligned}
& \rightarrow^{2} \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3 ; \mathrm{x}:=\mathrm{x}-1 ; \text { while } \mathrm{x} s \\
& \rightarrow^{2} \quad \cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3, \mathrm{x} \mapsto 2 ; \text { while } \mathrm{x} s \\
& \rightarrow \quad \ldots, \mathrm{y} \mapsto 3, \mathrm{x} \mapsto 2 ; \text { if } \mathrm{x}(s ; \text { while } \mathrm{x} s) \text { skip } \\
& \ldots \\
& \rightarrow \quad \ldots, \mathrm{y} \mapsto 6, \mathrm{x} \mapsto 0 ; \text { skip }
\end{aligned}
$$

Where we are

Defined $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and $\boldsymbol{H} ; \boldsymbol{s} \rightarrow \boldsymbol{H}^{\prime} ; \boldsymbol{s}^{\prime}$ and extended the latter to give s a meaning

- The way we did expressions is "large-step operational semantics"
- The way we did statements is "small-step operational semantics"
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

- Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge

Establishing Properties

We can prove a property of a terminating program by "running" it

Example: Our last program terminates with x holding $\mathbf{0}$

Establishing Properties

We can prove a property of a terminating program by "running" it
Example: Our last program terminates with x holding $\mathbf{0}$
We can prove a program diverges, i.e., for all \boldsymbol{H} and \boldsymbol{n},
$\cdot ; s \rightarrow^{n} \boldsymbol{H}$; skip cannot be derived
Example: while 1 skip

Establishing Properties

We can prove a property of a terminating program by "running" it
Example: Our last program terminates with x holding $\mathbf{0}$
We can prove a program diverges, i.e., for all \boldsymbol{H} and \boldsymbol{n},
$\cdot ; s \rightarrow^{n} \boldsymbol{H}$; skip cannot be derived
Example: while 1 skip

By induction on \boldsymbol{n}, but requires a stronger induction hypothesis

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If \boldsymbol{H} and s have no negative constants and $\boldsymbol{H} ; \boldsymbol{s} \rightarrow{ }^{*} \boldsymbol{H}^{\prime} ; \boldsymbol{s}^{\prime}$, then \boldsymbol{H}^{\prime} and s^{\prime} have no negative constants.

Example: If for all \boldsymbol{H}, we know \boldsymbol{s}_{1} and $\boldsymbol{s}_{\mathbf{2}}$ terminate, then for all \boldsymbol{H}, we know $\boldsymbol{H} ;\left(s_{1} ; s_{2}\right)$ terminates.

