
CSE505: Graduate Programming Languages

Lecture 7 — Lambda Calculus

Dan Grossman
Fall 2012

Where we are

� Done: Syntax, semantics, and equivalence
� For a language with little more than loops and global variables

� Now: Didn’t IMP leave some things out?
� In particular: scope, functions, and data structures
� (Not to mention threads, I/O, exceptions, strings, ...)

Time for a new model...

Dan Grossman CSE505 Fall 2012, Lecture 7 2

Data + Code

Higher-order functions work well for scope and data structures

� Scope: not all memory available to all code

let x = 1

let add3 y =

let z = 2 in

x + y + z

let seven = add3 4

� Data: Function closures store data.Example:Association “list”

let empty = (fun k -> raise Empty)

let cons k v lst = (fun k’ -> if k’=k then v else lst k’)

let lookup k lst = lst k

(Later: Objects do both too)

Dan Grossman CSE505 Fall 2012, Lecture 7 3

Adding data structures

Extending IMP with data structures is not too hard:

e ::= c | x | e + e | e ∗ e | (e, e) | e.1 | e.2
v ::= c | (v, v)
H ::= · | H,x �→ v

H ; e ⇓ v all old rules plus:

H ; e1 ⇓ v1 H ; e2 ⇓ v2

H ; (e1, e2) ⇓ (v1, v2)

H ; e ⇓ (v1, v2)

H ; e.1 ⇓ v1

H ; e ⇓ (v1, v2)

H ; e.2 ⇓ v2

Notice:

� We allow pairs of values, not just pairs of integers
� We now have stuck programs (e.g., c.1)

� What would C++ do? Scheme? ML? Java? Perl?
� Division also causes stuckness

Dan Grossman CSE505 Fall 2012, Lecture 7 4

What about functions

But adding functions (or objects) does not work well:

e ::= . . . | fun x -> s
v ::= . . . | fun x -> s
s ::= . . . | e(e)

H ; e ⇓ v H ; s → H ′ ; s′

Additions:

H ; fun x -> s ⇓ fun x -> s

H ; e1 ⇓ fun x -> s H ; e2 ⇓ v

H ; e1(e2) → H ; x := v; s

Does this match “the semantics we want” for function calls?

Dan Grossman CSE505 Fall 2012, Lecture 7 5

What about functions

But adding functions (or objects) does not work well:

e ::= . . . | fun x -> s
v ::= . . . | fun x -> s
s ::= . . . | e(e)

H ; fun x -> s ⇓ fun x -> s

H ; e1 ⇓ fun x -> s H ; e2 ⇓ v

H ; e1(e2) → H ; x := v; s

NO: Consider x := 1; (fun x -> y := x)(2); ans := x.

Scope matters; variable name does not. That is:

� Local variables should “be local”

� Choice of local-variable names should have only local
ramifications

Dan Grossman CSE505 Fall 2012, Lecture 7 6

Another try

H ; e1 ⇓ fun x -> s H ; e2 ⇓ v y “fresh”

H ; e1(e2) → H ; y := x;x := v; s;x := y

� “fresh” is not very IMP-like but okay (think malloc)

� not a good match to how functions are implemented

� yuck: the way we want to think about something as
fundamental as a call?

� NO: wrong model for most functional and OO languages
� (Even wrong for C if s calls another function that accesses the

global variable x)

Dan Grossman CSE505 Fall 2012, Lecture 7 7

The wrong model

H ; e1 ⇓ fun x -> s H ; e2 ⇓ v y “fresh”

H ; e1(e2) → H ; y := x;x := v; s;x := y

f1 := (fun x -> f2 := (fun z -> ans := x+ z));
f1(2);
x := 3;
f2(4)

“Should” set ans to 6:

� f1(2) should assign to f2 a function that adds 2 to its
argument and stores result in ans

“Actually” sets ans to 7:

� f2(2) assigns to f2 a function that adds the current value of
x to its argument

Dan Grossman CSE505 Fall 2012, Lecture 7 8

Punch line

Cannot properly model local scope via a global heap of integers.

� Functions are not syntactic sugar for assignments to globals

So let’s build a new model that focuses on this essential concept

� (can add back IMP features later)

Or just borrow a model from Alonzo Church

And drop mutation, conditionals, integers (!), and loops (!)

Dan Grossman CSE505 Fall 2012, Lecture 7 9

The Lambda Calculus

The Lambda Calculus:

e ::= λx. e | x | e e
v ::= λx. e

You apply a function by substituting the argument for the bound
variable

� (There is an equivalent environment definition not unlike
heap-copying; see future homework)

Dan Grossman CSE505 Fall 2012, Lecture 7 10

Example Substitutions

e ::= λx. e | x | e e
v ::= λx. e

Substitution is the key operation we were missing:

(λx. x)(λy. y) → (λy. y)

(λx. λy. y x)(λz. z) → (λy. y λz. z)

(λx. x x)(λx. x x) → (λx. x x)(λx. x x)

After substitution, the bound variable is gone, so its “name” was
irrelevant. (Good!)

Dan Grossman CSE505 Fall 2012, Lecture 7 11

A Programming Language

Given substitution (e1[e2/x] = e3), we can give a semantics:

e → e′

e[v/x] = e′

(λx. e) v → e′
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

A small-step, call-by-value (CBV), left-to-right semantics

� Terminates when the “whole program” is some λx. e

But (also) gets stuck when there’s a free variable “at top-level”

� Won’t “cheat” like we did with H(x) in IMP because scope
is what we are interested in

This is the “heart” of functional languages like OCaml

� But “real” implementations do not substitute; they do
something equivalent

Dan Grossman CSE505 Fall 2012, Lecture 7 12

Roadmap

� Motivation for a new model (done)

� CBV lambda calculus using substitution (done)

� Notes on concrete syntax

� Simple Lambda encodings (it is Turing complete!)

� Other reduction strategies

� Defining substitution

Dan Grossman CSE505 Fall 2012, Lecture 7 13

Concrete-Syntax Notes

We (and OCaml) resolve concrete-syntax ambiguities as follows:

1. λx. e1 e2 is (λx. e1 e2), not (λx. e1) e2
2. e1 e2 e3 is (e1 e2) e3, not e1 (e2 e3)

� Convince yourself application is not associative

More generally:

1. Function bodies extend to an unmatched right parenthesis
Example: (λx. y(λz. z)w)q

2. Application associates to the left
Example: e1 e2 e3 e4 is (((e1 e2) e3) e4)

� Like in IMP, assume we really have ASTs
(with non-leaves labeled λ or “application”)

� Rules may seem strange at first, but it is the most convenient
concrete syntax

� Based on 70 years experience

Dan Grossman CSE505 Fall 2012, Lecture 7 14

Lambda Encodings

Fairly crazy: we left out constants, conditionals, primitives, and
data structures

In fact, we are Turing complete and can encode whatever we need
(just like assembly language can)

Motivation for encodings:

� Fun and mind-expanding

� Shows we are not oversimplifying the model
(“numbers are syntactic sugar”)

� Can show languages are too expressive
(e.g., unlimited C++ template instantiation)

Encodings are also just “(re)definition via translation”

Dan Grossman CSE505 Fall 2012, Lecture 7 15

Encoding booleans

The “Boolean ADT”

� There are two booleans and one conditional expression.

� The conditional takes 3 arguments (e.g., via currying). If the
first is one boolean it evaluates to the second. If it is the
other boolean it evaluates to the third.

Any set of three expressions meeting this specification is a proper
encoding of booleans

Here is one of an infinite number of encodings:

“true” λx. λy. x
“false” λx. λy. y
“if” λb. λt. λf. b t f

Example: “if” “true” v1 v2 →∗ v1

Dan Grossman CSE505 Fall 2012, Lecture 7 16

Evaluation Order Matters

Careful: With CBV we need to “thunk”. . .

“if” “true” (λx. x) ((λx. x x)(λx. x x))
︸ ︷︷ ︸

an infinite loop

diverges, but

“if” “true” (λx. x) (λz. ((λx. x x)(λx. x x)) z))
︸ ︷︷ ︸

a value that when called diverges

does not

Dan Grossman CSE505 Fall 2012, Lecture 7 17

Encoding Pairs

The “pair ADT”:

� There is 1 constructor (taking 2 arguments) and 2 selectors

� 1st selector returns the 1st arg passed to the constructor

� 2nd selector returns the 2nd arg passed to the constructor

“mkpair” λx. λy. λz. z x y
“fst” λp. p(λx. λy. x)
“snd” λp. p(λx. λy. y)

Example:

“snd” (“fst” (“mkpair” (“mkpair” v1 v2) v3)) →∗ v2

Dan Grossman CSE505 Fall 2012, Lecture 7 18

Reusing Lambdas

Is it weird that the encodings of Booleans and pairs both used
λx. λy. x and λx. λy. y for different purposes?

Is it weird that the same bit-pattern in binary code can represent
an int, a float, an instruction, or a pointer?

Von Neumann: Bits can represent (all) code and data

Church (?): Lambdas can represent (all) code and data

Beware the “Turing tarpit”

Dan Grossman CSE505 Fall 2012, Lecture 7 19

Encoding Lists

Rather than start from scratch, notice that booleans and pairs are
enough to encode lists:

� Empty list is “mkpair” “false” “false”

� Non-empty list is λh. λt. “mkpair” “true” (“mkpair” h t)

� Is-empty is ...

� Head is ...

� Tail is ...

Note:

� Not too far from how lists are implemented
� Taking “tail” (“tail” “empty”) will produce some lambda

� Just like, without page-protection hardware,
null->tail->tail would produce some bit-pattern

Dan Grossman CSE505 Fall 2012, Lecture 7 20

Encoding Recursion

Some programs diverge, but can we write useful loops? Yes!

� Write a function that takes an f and calls it in place of
recursion

� Example (in enriched language):

λf. λx. if (x = 0) then 1 else (x ∗ f(x − 1))

� Then apply “fix” to it to get a recursive function:
� “fix” λf. λx. if (x = 0) then 1 else (x ∗ f(x − 1))

� “fix” λf. e reduces to something roughly equivalent to
e[(“fix”λf. e)/f], which is “unrolling the recursion once”
(and further unrollings will happen as necessary)

� The details, especially for CBV, are icky; the point is it is
possible and you define “fix” only once

� Not on exam:
“fix” λg. (λx. g (λy. x x y))(λx. g (λy. x x y))

Dan Grossman CSE505 Fall 2012, Lecture 7 21

Encoding Arithmetic Over Natural Numbers

How about arithmetic?

� Focus on non-negative numbers, addition, is-zero, etc.

How I would do it based on what we have so far:
� Lists of booleans for binary numbers

� Zero can be the empty list
� Use fix to implement adders, etc.
� Like in hardware except fixed-width avoids recursion

� Or just use list length for a unary encoding
� Addition is list append

But instead everybody always teaches Church numerals. Why?

� Tradition? Some sense of professional obligation?

� Better reason: You do not need fix: Basic arithmetic is often
encodable in languages where all programs terminate

� In any case, we will show some basics “just for fun”

Dan Grossman CSE505 Fall 2012, Lecture 7 22

Church Numerals

“0” λs. λz. z
“1” λs. λz. s z
“2” λs. λz. s (s z)
“3” λs. λz. s (s (s z))
...

� Numbers encoded with two-argument functions
� The “number i” composes the first argument i times, starting

with the second argument
� z stands for “zero” and s for “successor” (think unary)

� The trick is implementing arithmetic by cleverly passing the
right arguments for s and z

Dan Grossman CSE505 Fall 2012, Lecture 7 23

Church Numerals

“0” λs. λz. z
“1” λs. λz. s z
“2” λs. λz. s (s z)
“3” λs. λz. s (s (s z))

“successor” λn. λs. λz. s (n s z)

successor: take “a number” and return “a number” that (when
called) applies s one more time

Dan Grossman CSE505 Fall 2012, Lecture 7 24

Church Numerals

“0” λs. λz. z
“1” λs. λz. s z
“2” λs. λz. s (s z)
“3” λs. λz. s (s (s z))

“successor” λn. λs. λz. s (n s z)
“plus” λn. λm. λs. λz. n s (m s z)

plus: take two “numbers” and return a “number” that uses one
number as the zero argument for the other

Dan Grossman CSE505 Fall 2012, Lecture 7 25

Church Numerals

“0” λs. λz. z
“1” λs. λz. s z
“2” λs. λz. s (s z)
“3” λs. λz. s (s (s z))

“successor” λn. λs. λz. s (n s z)
“plus” λn. λm. λs. λz. n s (m s z)
“times” λn. λm. m (“plus” n) “zero”

times: take two “numbers” m and n and pass to m a function
that adds n to its argument (so this will happen m times) and
“zero” (where to start the m iterations of addition)

Dan Grossman CSE505 Fall 2012, Lecture 7 26

Church Numerals

“0” λs. λz. z
“1” λs. λz. s z
“2” λs. λz. s (s z)
“3” λs. λz. s (s (s z))

“successor” λn. λs. λz. s (n s z)
“plus” λn. λm. λs. λz. n s (m s z)
“times” λn. λm. m (“plus” n) “zero”
“isZero” λn. n (λx. “false”) “true”

isZero: an easy one, see how the two arguments will lead to the
correct answer

Dan Grossman CSE505 Fall 2012, Lecture 7 27

Church Numerals

“0” λs. λz. z
“1” λs. λz. s z
“2” λs. λz. s (s z)
“3” λs. λz. s (s (s z))

“successor” λn. λs. λz. s (n s z)
“plus” λn. λm. λs. λz. n s (m s z)
“times” λn. λm. m (“plus” n) “zero”
“isZero” λn. n (λx. “false”) “true”

“predecessor” (with 0 sticky) the hard one; see Wikipedia
“minus” similar to times with pred instead of plus
“isEqual” subtract and test for zero

Dan Grossman CSE505 Fall 2012, Lecture 7 28

Roadmap

� Motivation for a new model (done)

� CBV lambda calculus using substitution (done)

� Notes on concrete syntax (done)

� Simple Lambda encodings (it is Turing complete!) (done)

� Other reduction strategies

� Defining substitution

Then start type systems

� Later take a break from types to consider first-class
continuations and related topics

Dan Grossman CSE505 Fall 2012, Lecture 7 29

