CSE505: Graduate Programming Languages

Lecture 11 — STLC Extensions and Related Topics

Dan Grossman Winter 2012

Review

$$\frac{e_1 \to e_1'}{(\lambda x.\; e)\; v \to e[v/x]} \qquad \frac{e_1 \to e_1'}{e_1\; e_2 \to e_1'\; e_2} \qquad \frac{e_2 \to e_2'}{v\; e_2 \to v\; e_2'}$$

e[e'/x]: capture-avoiding substitution of e' for free x in e

$$\begin{array}{ccc} \frac{\Gamma, x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash c: \mathsf{int}} & \frac{\Gamma, x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash \lambda x. \; e: \tau_1 \to \tau_2} \\ \\ \frac{\Gamma \vdash e_1: \tau_2 \to \tau_1}{\Gamma \vdash e_1 \; e_2: \tau_1} & \frac{\Gamma \vdash e_2: \tau_2}{\Gamma \vdash e_1 \; e_2: \tau_1} \end{array}$$

Preservation: If $\cdot \vdash e : \tau$ and $e \to e'$, then $\cdot \vdash e' : \tau$. Progress: If $\cdot \vdash e : \tau$, then e is a value or $\exists e'$ such that $e \to e'$.

Dan Grossman

E505 Winter 2012, Lecture 11

Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a *principled methodology* thanks to a *proper* education

- ► Extend the syntax
- Extend the operational semantics
 - ▶ Derived forms (syntactic sugar), or
 - ► Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Let bindings (CBV)

$$e::=\dots\mid \mathsf{let}\ x=e_1\ \mathsf{in}\ e_2$$

$$e_1\to e_1'$$

$$\mathsf{let}\ x=e_1\ \mathsf{in}\ e_2\to \mathsf{let}\ x=e_1'\ \mathsf{in}\ e_2$$

$$\mathsf{let}\ x=v\ \mathsf{in}\ e\to e[v/x]$$

$$\frac{\Gamma \vdash e_1 : \tau' \qquad \Gamma, x : \tau' \vdash e_2 : \tau}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau}$$

(Also need to extend definition of substitution...)

Progress: If e is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange

CSE505 Winter 2012, Lecture 1

Dan Grossmai

SE505 Winter 2012, Lecture

Derived forms

let seems just like λ , so can make it a derived form

- lacktriangledown let $x=e_1$ in e_2 "a macro" / "desugars to" $(\lambda x.\ e_2)\ e_1$
- ► A "derived form"

(Harder if λ needs explicit type)

Or just define the semantics to replace let with λ :

$$\overline{\text{let } x = e_1 \text{ in } e_2 \to (\lambda x. \ e_2) \ e_1}$$

These 3 semantics are *different* in the state-sequence sense $(e_1 o e_2 o \ldots o e_n)$

▶ But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and λ differently (later topic) Note: Don't desugar early if it hurts error messages! **Booleans and Conditionals**

$$e ::= \ldots \mid \mathsf{true} \mid \mathsf{false} \mid \mathsf{if} \ e_1 \ e_2 \ e_3$$

$$v ::= \dots \mid \mathsf{true} \mid \mathsf{false}$$

$$\tau ::= \dots | \mathsf{bool} |$$

$$\frac{e_1 \rightarrow e_1'}{\text{if } e_1 \ e_2 \ e_3 \rightarrow \text{if } e_1' \ e_2 \ e_3}$$

$$\frac{\Gamma \vdash e_1 : \mathsf{bool} \qquad \Gamma \vdash e_2 : \tau \qquad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \mathsf{if} \ e_1 \ e_2 \ e_3 : \tau}$$

$$\frac{}{\Gamma \vdash \mathsf{true} : \mathsf{bool}} \qquad \frac{}{\Gamma \vdash \mathsf{false} : \mathsf{bool}}$$

Also extend definition of substitution (will stop writing that)... Notes: CBN, new Canonical Forms case, all lemma cases easy

Dan Grossman CSE505 Winter 2012, Lecture 11

Dan Grossman

CSE505 Winter 2012, Lecture 11

•

Pairs (CBV, left-right)

$$egin{array}{lll} e & ::= & \ldots \mid (e,e) \mid e.1 \mid e.2 \ v & ::= & \ldots \mid (v,v) \ au & ::= & \ldots \mid au * au \end{array}$$

$$\frac{e_1 \rightarrow e_1'}{(e_1, e_2) \rightarrow (e_1', e_2)} \qquad \frac{e_2 \rightarrow e_2'}{(v_1, e_2) \rightarrow (v_1, e_2')}$$

$$\frac{e \rightarrow e'}{e.1 \rightarrow e'.1} \qquad \frac{e \rightarrow e'}{e.2 \rightarrow e'.2}$$

$$(v_1, v_2).1 o v_1$$
 $(v_1, v_2).2 o v_2$

Small-step can be a pain

- ► Large-step needs only 3 rules
- ▶ Will learn more concise notation later (evaluation contexts)

Dan Grossman

SE505 Winter 2012, Lecture 11

Pairs continued

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1 * \tau_2}{\Gamma \vdash e.1 : \tau_1} \qquad \qquad \frac{\Gamma \vdash e : \tau_1 * \tau_2}{\Gamma \vdash e.2 : \tau_2}$$

Canonical Forms: If $\cdot \vdash v : au_1 * au_2$, then v has the form (v_1, v_2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result directly

'

SE505 Winter 2012, Lecture 1

Records

Records are like n-ary tuples except with $named\ fields$

Field names are *not* variables; they do *not* α -convert

$$e ::= \dots | \{l_1 = e_1; \dots; l_n = e_n\} | e.l$$

 $v ::= \dots | \{l_1 = v_1; \dots; l_n = v_n\}$

$$egin{array}{lll} v & ::= & \ldots \mid \{l_1 = v_1, \ldots, l_n = v_n \ au & ::= & \ldots \mid \{l_1 : au_1, \ldots, l_n : au_n\} \end{array}$$

$$\frac{e_{i} \to e'_{i}}{\{l_{1}=v_{1}, \dots, l_{i-1}=v_{i-1}, l_{i}=e_{i}, \dots, l_{n}=e_{n}\}} \longrightarrow \{l_{1}=v_{1}, \dots, l_{i-1}=v_{i-1}, l_{i}=e'_{i}, \dots, l_{n}=e_{n}\}} \xrightarrow{e \to e'} e.l \to e'.l$$

$$\frac{1 \le i \le n}{\{l_1 = v_1, \dots, l_n = v_n\} \cdot l_i \to v_i}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \dots \qquad \Gamma \vdash e_n : \tau_n \qquad \text{labels distinct}}{\Gamma \vdash \{l_1 = e_1, \dots, l_n = e_n\} : \{l_1 : \tau_1, \dots, l_n : \tau_n\}}$$

$$\frac{\Gamma \vdash e : \{l_1 : \tau_1, \dots, l_n : \tau_n\} \qquad 1 \le i \le n}{\Gamma \vdash e . l_i : \tau_i}$$

Dan Grossman

CSE505 Winter 2012, Lecture 11

Records continued

Should we be allowed to reorder fields?

$$ightharpoonup \cdot \vdash \{l_1 = 42; l_2 = \text{true}\} : \{l_2 : \text{bool}; l_1 : \text{int}\} ??$$

► Really a question about, "when are two types equal?"

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

► Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Dan Grossma

SE505 Winter 2012, Lecture

Sums

What about ML-style datatypes:

- 1. Tagged variants (i.e., discriminated unions)
- 2. Recursive types
- 3. Type constructors (e.g., type 'a mylist = \dots)
- 4. Named types

For now, just model (1) with (anonymous) sum types

▶ (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss informally

Sums syntax and overview

 $e ::= \ldots \mid A(e) \mid B(e) \mid match \ e \ with \ Ax. \ e \mid Bx. \ e$

 $v ::= \ldots \mid A(v) \mid B(v)$

 $\tau ::= \ldots \mid \tau_1 + \tau_2$

- Only two constructors: A and B
- ▶ All values of any sum type built from these constructors
- ▶ So A(e) can have any sum type allowed by e's type
- ▶ No need to declare sum types in advance
- ▶ Like functions, will "guess the type" in our rules

Sums operational semantics

match A(v) with $Ax. e_1 \mid By. e_2 \rightarrow e_1[v/x]$

match B(v) with Ax. $e_1 \mid By. \ e_2 \rightarrow e_2[v/y]$

$$\frac{e \rightarrow e'}{\mathbf{A}(e) \rightarrow \mathbf{A}(e')} \qquad \qquad \frac{e \rightarrow e'}{\mathbf{B}(e) \rightarrow \mathbf{B}(e')}$$

$$e \rightarrow e'$$

match e with Ax. $e_1 \mid By. \ e_2 \rightarrow match \ e'$ with Ax. $e_1 \mid By. \ e_2$

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

_

CSE505 Winter 2012, Lecture 11

What is going on

Feel free to think about tagged values in your head:

- A tagged value is a pair of:
 - ► A tag **A** or **B** (or 0 or 1 if you prefer)
 - ► The (underlying) value
- ► A match:
 - Checks the tag
 - ▶ Binds the variable to the (underlying) value

This much is just like Caml and related to homework 2

Dan Grossm

SE505 Winter 2012, Lecture 1

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{A}(e) : \tau_1 + \tau_2} \qquad \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{B}(e) : \tau_1 + \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \qquad \Gamma, x \mathpunct{:} \tau_1 \vdash e_1 : \tau \qquad \Gamma, y \mathpunct{:} \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \mathsf{match} \ e \ \mathsf{with} \ \mathsf{A} x. \ e_1 \mid \mathsf{B} y. \ e_2 : \tau}$$

Key ideas:

- ▶ For constructor-uses, "other side can be anything"
- ► For match, both sides need same type
 - ▶ Don't know which branch will be taken, just like an **if**.
 - In fact, can drop explicit booleans and encode with sums:
 E.g., bool = int + int, true = A(0), false = B(0)

Sums Type Safety

Canonical Forms: If $\cdot \vdash v: \tau_1 + \tau_2$, then there exists a v_1 such that either v is $\mathbf{A}(v_1)$ and $\cdot \vdash v_1: \tau_1$ or v is $\mathbf{B}(v_1)$ and $\cdot \vdash v_1: \tau_2$

- Progress for match v with Ax. $e_1 \mid By$. e_2 follows, as usual, from Canonical Forms
- Preservation for **match** v **with A**x**.** $e_1 \mid By$ **.** e_2 follows from the type of the underlying value and the Substitution Lemma
- ► The Substitution Lemma has new "hard" cases because we have new binding occurrences
- ▶ But that's all there is to it (plus lots of induction)

Dan Grossman

CSE505 Winter 2012, Lecture 11

Dan Grossm

CSE505 Winter 2012, Lecture

16

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- ▶ Sums are just as fundamental: "this or that not both"
- ► You have seen how Caml does sums (datatypes)
- ► Worth showing how C and Java do the same thing
 - ▶ A primitive in one language is an idiom in another

Sums in C

type t = A of t1 | B of t2 | C of t3 match e with A \times -> ...

One way in C:

- ▶ No static checking that tag is obeyed
- ► As fat as the fattest variant (avoidable with casts)
 - ► Mutation costs us again!

Dan Grossman

E505 Winter 2012, Lecture 11

Dan Grossman

CSE505 Winter 2012, Lecture 11

Sums in Java

```
type t = A of t1 | B of t2 | C of t3 match e with A \times -> ...
```

One way in Java (t4 is the match-expression's type):

```
abstract class t {abstract t4 m();} class A extends t { t1 x; t4 m(){...}} class B extends t { t2 x; t4 m(){...}} class C extends t { t3 x; t4 m(){...}} ... e.m() ...
```

- ▶ A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)

Dan Grossman

CSE505 Winter 2012, Lecture 11

19

SE505 Winter 2012, Lecture 1

lacktriangle Given a $au_1+ au_2$, you must be prepared for either a au_1 or au_2

• Given a $\tau_1 * \tau_2$, you can get a τ_1 or a τ_2 (or both; your

▶ With only pairs, you clumsily use dummy values, waste space,

and rely on unchecked tagging conventions

► Example: replace int + (int → int) with

Pairs and sums are "logical duals" (more on that later)

▶ To make a $au_1 * au_2$ you need a au_1 and a au_2

lacktriangle To make a $au_1+ au_2$ you need a au_1 or a au_2

Base Types and Primitives, in general

What about floats, strings, ...?

Could add them all or do something more general...

Parameterize our language/semantics by a collection of *base types* (b_1,\ldots,b_n) and *primitives* $(p_1:\tau_1,\ldots,p_n:\tau_n)$. Examples:

- ► concat : string→string→string
- ▶ toInt : float→int
- ► "hello" : string

For each primitive, assume if applied to values of the right types it produces a value of the right type

Together the types and assumed steps tell us how to type-check and evaluate $p_i \ v_1 \dots v_n$ where p_i is a primitive

We can prove soundness once and for all given the assumptions

Dan Grossman

CSE505 Winter 2012, Lecture 1

OI E

Recursion

Pairs vs. Sums

You need both in your language

 $int * (int * (int \rightarrow int))$

(the value's "choice")

We won't prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won't type-check, nor will any encoding of equal expressive power

- ► So instead add an explicit construct for recursion
- ightharpoonup You might be thinking **let rec** f(x) = e, but we will do something more concise and general but less intuitive

$$e ::= \dots \mid \text{fix } e$$

$$\frac{e \to e'}{\mathsf{fix} \; e \to \mathsf{fix} \; e'}$$

 $\overline{\text{fix } \lambda x. \ e \rightarrow e[\text{fix } \lambda x. \ e/x]}$

No new values and no new types

CSE505 Winter 2012, Lecture 1

22

Using fix

To use **fix** like **let rec**, just pass it a two-argument function where the first argument is for recursion

▶ Not shown: fix and tuples can also encode mutual recursion

Example:

$$\begin{array}{l} \text{Example.} \\ \text{(fix $\lambda f.$ $\lambda n.$ if $(n < 1)$ 1 $(n * (f(n-1))))$ 5} \\ \rightarrow \\ \text{($\lambda n.$ if $(n < 1)$ 1 $(n * ((\textit{fix $\lambda f.$ $\lambda n.$ if $(n < 1)$ 1 $(n * (f(n-1))))$ ($n-1))))$ 5} \\ \rightarrow \\ \text{if $(5 < 1)$ 1 $(5 * ((\textit{fix $\lambda f.$ $\lambda n.$ if $(n < 1)$ 1 $(n * (f(n-1))))$ ($5-1))$ } \\ \rightarrow^2 \\ 5 * ((\textit{fix $\lambda f.$ $\lambda n.$ if $(n < 1)$ 1 $(n * (f(n-1))))$ ($5-1))$ } \\ \rightarrow^2 \\ 5 * ((\lambda n.$ if $(n < 1)$ 1 $(n * ((\textit{fix $\lambda f.$ $\lambda n.$ if $(n < 1)$ 1 $(n * (f(n-1))))$ ($n-1)))) $4)} \\ \rightarrow \\ \dots \end{array}$$

Why called fix?

In math, a fix-point of a function g is an x such that g(x) = x

- lacktriangle This makes sense only if g has type au o au for some au
- \triangleright A particular g could have have 0, 1, 39, or infinity fix-points
- ► Examples for functions of type int → int:
 - $\lambda x. \ x+1$ has no fix-points
 - $ightharpoonup \lambda x. \ x*0$ has one fix-point
 - $ightharpoonup \lambda x.$ absolute_value(x) has an infinite number of fix-points
 - λx . if (x < 10 && x > 0) x 0 has 10 fix-points

Dan Grossman CSE505 Winter 2012, Lecture 11 23 Dan Grossman CSE505 Winter 2012, Lecture 11 24

Higher types

At higher types like (int \rightarrow int) \rightarrow (int \rightarrow int), the notion of fix-point is exactly the same (but harder to think about)

For what inputs f of type $\operatorname{int} \to \operatorname{int}$ is g(f) = f

Examples:

- $\triangleright \lambda f. \lambda x. (f x) + 1$ has no fix-points
- $\rightarrow \lambda f. \ \lambda x. \ (f \ x) * 0 \ (or just \ \lambda f. \ \lambda x. \ 0) \ has 1 \ fix-point$
 - ► The function that always returns 0
 - ▶ In math, there is exactly one such function (cf. equivalence)
- $\triangleright \lambda f. \lambda x.$ absolute_value(f x) has an infinite number of fix-points: Any function that never returns a negative result

Typing fix

$$\frac{\Gamma \vdash e : \tau \to \tau}{\Gamma \vdash \mathsf{fix}\; e : \tau}$$

Math explanation: If e is a function from au to au, then fix e, the fixed-point of e, is some au with the fixed-point property

 \blacktriangleright So it's something with type τ

Operational explanation: fix λx . e' becomes e'[fix λx . e'/x]

- ▶ The substitution means x and $\mathbf{fix} \lambda x$. e' need the same type
- ▶ The result means e' and fix λx . e' need the same type

Note: The au in the typing rule is usually insantiated with a function type

lacktriangle e.g., $au_1 o au_2$, so e has type $(au_1 o au_2) o (au_1 o au_2)$

Note: Proving soundness is straightforward!

Anonymity

We added many forms of types, all unnamed a.k.a. structural. Many real PLs have (all or mostly) named types:

- ▶ Java, C, C++: all record types (or similar) have names
 - ▶ Omitting them just means compiler makes up a name
- Caml sum types and record types have names

A never-ending debate:

- Structual types allow more code reuse: good
- ▶ Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- ▶ Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Back to factorial

Now, what are the fix-points of $\lambda f. \ \lambda x. \ \text{if} \ (x < 1) \ 1 \ (x * (f(x - 1)))?$

It turns out there is exactly one (in math): the factorial function!

And fix λf . λx . if (x < 1) 1 (x * (f(x - 1))) behaves just like the factorial function

- ► That is, it behaves just like the fix-point of $\lambda f. \ \lambda x. \ \text{if} \ (x < 1) \ 1 \ (x * (f(x - 1)))$
- ▶ In general, fix takes a function-taking-function and returns its fix-point

(This isn't necessarily important, but it explains the terminology and shows that programming is deeply connected to mathematics)

General approach

We added let, booleans, pairs, records, sums, and fix

- let was syntactic sugar
- ▶ fix made us Turing-complete by "baking in" self-application
- ► The others added types

Whenever we add a new form of type au there are:

- Introduction forms (ways to make values of type τ)
- \triangleright Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think "what are the intro and elim forms"?

Termination

Surprising fact: If $\cdot \vdash e : \tau$ in STLC with all our additions except **fix**, then there exists a v such that $e \rightarrow^* v$

► That is, all programs terminate

So termination is trivially decidable (the constant "yes" function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

► Could present it in about an hour if desired

Non-proof:

- Recursion in λ calculus requires some sort of self-application
- ▶ Easy fact: For all Γ , x, and τ , we cannot derive $\Gamma \vdash x \ x : \tau$