CSE505: Graduate Programming Languages

Lecture 12 — The Curry-Howard Isomorphism

Dan Grossman Winter 2012

Curry-Howard Isomorphism

What we did:

- Define a programming language
- ▶ Define a type system to rule out programs we don't want

What logicians do:

- ▶ Define a logic (a way to state propositions)
 - lacktriangleright Example: Propositional logic $p := b \mid p \wedge p \mid p \vee p \mid p
 ightarrow p$
- Define a proof system (a way to prove propositions)

But it turns out we did that too!

Slogans:

- "Propositions are Types"
- "Proofs are Programs"

A slight variant

Let's take the explicitly typed simply-typed lambda-calculus with:

- ightharpoonup Any number of base types b_1, b_2, \ldots
- No constants (can add one or more if you want)
- Pairs
- Sums

$$\begin{array}{lll} e & ::= & x \mid \lambda x. \ e \mid e \ e \\ & \mid & (e,e) \mid e.1 \mid e.2 \\ & \mid & \mathsf{A}(e) \mid \mathsf{B}(e) \mid \mathsf{match} \ e \ \mathsf{with} \ \mathsf{A}x. \ e \mid \mathsf{B}x. \ e \\ \tau & ::= & b \mid \tau \rightarrow \tau \mid \tau * \tau \mid \tau + \tau \end{array}$$

Even without constants, plenty of terms type-check with $\Gamma=\cdot ...$

$$\lambda x:b_{17}. \ x$$

$$b_{17}
ightarrow b_{17}$$

$$\lambda x:b_1.\ \lambda f:b_1\to b_2.\ f\ x$$

$$b_1 \to (b_1 \to b_2) \to b_2$$

$$\lambda x:b_1 \to b_2 \to b_3$$
. $\lambda y:b_2$. $\lambda z:b_1$. $x z y$

$$(b_1
ightarrow b_2
ightarrow b_3)
ightarrow b_2
ightarrow b_1
ightarrow b_3$$

$$\lambda x:b_1. (A(x),A(x))$$

$$b_1 o ((b_1 + b_7) * (b_1 + b_4))$$

$$\lambda f{:}b_1 o b_3.\ \lambda g{:}b_2 o b_3.\ \lambda z{:}b_1+b_2.$$
 (match z with A $x.\ f\ x\mid Bx.\ g\ x)$

$$(b_1
ightarrow b_3)
ightarrow (b_2
ightarrow b_3)
ightarrow (b_1 + b_2)
ightarrow b_3$$

$$\lambda x:b_1*b_2.\ \lambda y:b_3.\ ((y,x.1),x.2)$$

$$(b_1*b_2)\rightarrow b_3\rightarrow ((b_3*b_1)*b_2)$$

Empty and Nonempty Types

Have seen several "nonempty" types (closed terms of type exist):

$$\begin{array}{l} b_{17} \to b_{17} \\ b_1 \to (b_1 \to b_2) \to b_2 \\ (b_1 \to b_2 \to b_3) \to b_2 \to b_1 \to b_3 \\ b_1 \to ((b_1 + b_7) * (b_1 + b_4)) \\ (b_1 \to b_3) \to (b_2 \to b_3) \to (b_1 + b_2) \to b_3 \\ (b_1 * b_2) \to b_3 \to ((b_3 * b_1) * b_2) \end{array}$$

There are also many "empty" types (no closed term of type exists):

$$b_1 \qquad b_1
ightarrow b_2 \qquad b_1 + (b_1
ightarrow b_2) \qquad b_1
ightarrow (b_2
ightarrow b_1)
ightarrow b_2$$

And there is a "secret" way of knowing whether a type will be empty; let me show you propositional logic...

Propositional Logic

With \rightarrow for implies, + for inclusive-or and * for and:

$$\begin{array}{ll} p & ::= & b \mid p \rightarrow p \mid p * p \mid p + p \\ \Gamma & ::= & \cdot \mid \Gamma, p \end{array}$$

$$\Gamma dash p$$

$$\begin{array}{ccccc} \frac{\Gamma \vdash p_1 & \Gamma \vdash p_2}{\Gamma \vdash p_1 * p_2} & \frac{\Gamma \vdash p_1 * p_2}{\Gamma \vdash p_1} & \frac{\Gamma \vdash p_1 * p_2}{\Gamma \vdash p_2} \\ & \frac{\Gamma \vdash p_1}{\Gamma \vdash p_1 + p_2} & \frac{\Gamma \vdash p_2}{\Gamma \vdash p_1 + p_2} \\ & \frac{\Gamma \vdash p_1 + p_2}{\Gamma \vdash p_1 + p_2} & \frac{\Gamma \vdash p_2}{\Gamma \vdash p_1 + p_2} \\ & \frac{\Gamma \vdash p_1 + p_2}{\Gamma \vdash p_3} & \frac{\Gamma \vdash p_1 \rightarrow p_2}{\Gamma \vdash p_1} \\ & \frac{P \in \Gamma}{\Gamma} & \frac{\Gamma \vdash p_1 \vdash p_2}{\Gamma \vdash p_2} & \frac{\Gamma \vdash p_1 \rightarrow p_2}{\Gamma \vdash p_1} \end{array}$$

 $\Gamma \vdash p_2$

 $\Gamma \vdash p \qquad \Gamma \vdash p_1 \rightarrow p_2$

Guess what!!!!

That's exactly our type system, erasing terms and changing each τ to a p

$$\Gamma \vdash e : \tau$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2} \quad \frac{\Gamma \vdash e : \tau_1 * \tau_2}{\Gamma \vdash e.1 : \tau_1} \quad \frac{\Gamma \vdash e : \tau_1 * \tau_2}{\Gamma \vdash e.2 : \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{A}(e) : \tau_1 + \tau_2} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{B}(e) : \tau_1 + \tau_2}$$

$$rac{\Gamma dash e : au_2}{\Gamma dash \mathsf{B}(e) : au_1 + au_2}$$

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma, x \mathpunct{:} \tau_1 \vdash e_1 : \tau \quad \Gamma, y \mathpunct{:} \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \mathsf{match} \ e \ \mathsf{with} \ \mathsf{A} x. \ e_1 \mid \mathsf{B} y. \ e_2 : \tau}$$

$$rac{\Gamma(x) = au}{\Gamma dash x : au} = rac{\Gamma}{\Gamma dash}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x. \ e : \tau_1 \to \tau_2}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x. \ e : \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash e_1 : \tau_2 \to \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \ e_2 : \tau_1}$$

Curry-Howard Isomorphism

- ► Given a well-typed closed term, take the typing derivation, erase the terms, and have a propositional-logic proof
- ► Given a propositional-logic proof, there exists a closed term with that type
- ▶ A term that type-checks is a proof it tells you exactly how to derive the logic formula corresponding to its type
- Constructive (hold that thought) propositional logic and simply-typed lambda-calculus with pairs and sums are the same thing.
 - Computation and logic are deeply connected
 - \triangleright λ is no more or less made up than implication
- Revisit our examples under the logical interpretation...

$$\lambda x:b_{17}. \ x$$

$$b_{17}
ightarrow b_{17}$$

$$\lambda x:b_1.\ \lambda f:b_1\to b_2.\ f\ x$$

$$b_1 \to (b_1 \to b_2) \to b_2$$

$$\lambda x:b_1 \to b_2 \to b_3$$
. $\lambda y:b_2$. $\lambda z:b_1$. $x z y$

$$(b_1
ightarrow b_2
ightarrow b_3)
ightarrow b_2
ightarrow b_1
ightarrow b_3$$

$$\lambda x:b_1. (A(x),A(x))$$

$$b_1 \to ((b_1 + b_7) * (b_1 + b_4))$$

$$\lambda f{:}b_1 o b_3.\ \lambda g{:}b_2 o b_3.\ \lambda z{:}b_1+b_2.$$
 (match z with A $x.\ f\ x\mid \mathsf{B}x.\ g\ x)$

$$(b_1 \to b_3) \to (b_2 \to b_3) \to (b_1 + b_2) \to b_3$$

$$\lambda x:b_1*b_2.\ \lambda y:b_3.\ ((y,x.1),x.2)$$

$$(b_1*b_2)\rightarrow b_3\rightarrow ((b_3*b_1)*b_2)$$

Why care?

Because:

- ► This is just fascinating (glad I'm not a dog)
- Don't think of logic and computing as distinct fields
- Thinking "the other way" can help you know what's possible/impossible
- Can form the basis for automated theorem provers
- Type systems should not be ad hoc piles of rules!

So, every typed λ -calculus is a proof system for some logic...

Is STLC with pairs and sums a *complete* proof system for propositional logic? Almost...

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

$$\overline{\Gamma dash p_1 + (p_1 o p_2)}$$

(Think " $p+\neg p$ " – also equivalent to double-negation $\neg \neg p o p$)

STLC does not support this law; for example, no closed expression has type $b_7 + (b_7 o b_5)$

Logics without this rule are called *constructive*. They're useful because proofs "know how the world is" and "are executable" and "produce examples"

Can still "branch on possibilities" by making the excluded middle an explicit assumption:

$$((p_1 + (p_1 \rightarrow p_2)) * (p_1 \rightarrow p_3) * ((p_1 \rightarrow p_2) \rightarrow p_3)) \rightarrow p_3$$

Theorem: I can wake up at 9AM and get to campus by 10AM.

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If it is not a weekday, traffic is light and I can drive. Since it is a weekday or not a weekday, I can get to campus by 10AM.

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If it is not a weekday, traffic is light and I can drive. Since it is a weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don't know day it is, this proof does not let you construct a plan to get to campus by 10AM.

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If it is not a weekday, traffic is light and I can drive. Since it is a weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don't know day it is, this proof does not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a program from a proof that "does" what you proved "could be"

Theorem: I can wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If it is not a weekday, traffic is light and I can drive. Since it is a weekday or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don't know day it is, this proof does not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a program from a proof that "does" what you proved "could be"

You can't prove the theorem above, but you can prove, "If I know whether it is a weekday or not, then I can get to campus by 10AM"

Fix

A "non-terminating proof" is no proof at all

Remember the typing rule for fix:

$$\frac{\Gamma \vdash e : \tau \to \tau}{\Gamma \vdash \mathsf{fix} \; e : \tau}$$

That let's us prove anything! Example: fix $\lambda x:b_3$. x has type b_3

So the "logic" is inconsistent (and therefore worthless)

Related: In ML, a value of type 'a never terminates normally (raises an exception, infinite loop, etc.)

Last word on Curry-Howard

It's not just STLC and constructive propositional logic

Every logic has a corresponding typed λ calculus (and no consistent logic has something as "powerful" as **fix**).

► Example: When we add universal types ("generics") in a later lecture, that corresponds to adding universal quantification

If you remember one thing: the typing rule for function application is *modus ponens*