
CSE505: Graduate Programming Languages

Lecture 14 — Subtyping

Dan Grossman
Winter 2012

Being Less Restrictive

“Will a λ term get stuck?” is undecidable, so a sound, decidable
type system can always be made less restrictive

An “uninteresting” rule that is sound but not “admissable”:

Γ � e1 : τ

Γ � if true e1 e2 : τ

We’ll study ways to give one term many types (“polymorphism”)

Fact: The version of STLC with explicit argument types
(λx : τ . e) has no polymorphism:
If Γ � e : τ1 and Γ � e : τ2, then τ1 = τ2

Fact: Even without explicit types, many “reuse patterns” do not
type-check. Example: (λf. (f 0, f true))(λx. (x, x))
(evaluates to ((0, 0), (true, true)))

Dan Grossman CSE505 Winter 2012, Lecture 14 2

An overloaded PL word

Polymorphism means many things. . .

� Ad hoc polymorphism: e1 + e2 in SML<C<Java<C++

� Ad hoc, cont’d: Maybe e1 and e2 can have different run-time
types and we choose the + based on them

� Parametric polymorphism: e.g., Γ � λx. x : ∀α.α → α or
with explicit types: Γ � Λα. λx : α. x : ∀α.α → α
(which “compiles” i.e. “erases” to λx. x)

� Subtype polymorphism: new Vector().add(new C()) is
legal Java because new C() has types Object and C

. . . and nothing.
(More precise terms: “static overloading,” “dynamic dispatch,”
“type abstraction,” and “subtyping”)

Dan Grossman CSE505 Winter 2012, Lecture 14 3

Today

This lecture is about subtyping

� Let more terms type-check without adding any new
operational behavior

� But at end consider coercions

� Continue using STLC as our core model

� Complementary to type variables which we will do later
� Parametric polymorphism (∀), a.k.a. generics
� First-class ADTs (∃)

� Even later: OOP, dynamic dispatch, inheritance vs. subtyping

Motto: Subtyping is not a matter of opinion!

Dan Grossman CSE505 Winter 2012, Lecture 14 4

Records

We’ll use records to motivate subtyping:

e ::= . . . | {l1 = e1, . . . , ln = en} | e.l
τ ::= . . . | {l1 : τ1, . . . , ln : τn}
v ::= . . . | {l1 = v1, . . . , ln = vn}

{l1 = v1, . . . , ln = vn}.li → vi

ei → e′i
{l1=v1, . . . , li−1=vi−1, li=ei, . . . , ln=en}

→ {l1=v1, . . . , li−1=vi−1, li=e′i, . . . , ln=en}

e → e′

e.l → e.l

Γ � e1 : τ1 . . . Γ � en : τn labels distinct

Γ � {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ � e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ � e.li : τi
Dan Grossman CSE505 Winter 2012, Lecture 14 5

Should this typecheck?

(λx : {l1:int, l2:int}. x.l1 + x.l2){l1=3, l2=4, l3=5}

Right now, it doesn’t, but it won’t get stuck

Suggests width subtyping:

τ1 ≤ τ2

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

And one one new type-checking rule: Subsumption

subsumption
Γ � e : τ ′ τ ′ ≤ τ

Γ � e : τ

Dan Grossman CSE505 Winter 2012, Lecture 14 6

Now it type-checks

.

.

.

·, x : {l1:int, l2:int} � x.l1 + x.l2 : int

· � λx : {l1:int, l2:int}. x.l1 + x.l2 : {l1:int, l2:int} → int

· � 3 : int · � 4 : int · � 5 : int

· � {l1=3, l2=4, l3=5} : {l1:int, l2:int, l3:int}
{l1:int, l2:int, l3:int} ≤ {l1:int, l2:int}

· � {l1=3, l2=4, l3=5} : {l1:int, l2:int}
· � (λx : {l1:int, l2:int}. x.l1 + x.l2){l1=3, l2=4, l3=5} : int

Instantiation of Subsumption is highlighted (pardon formatting)

The derivation of the subtyping fact
{l1:int, l2:int, l3:int} ≤ {l1:int, l2:int} would continue, using rules
for the τ1 ≤ τ2 judgment

� But here we just use the one axiom we have so far

Clean division of responsibility:

� Where to use subsumption

� How to show two types are subtypes

Dan Grossman CSE505 Winter 2012, Lecture 14 7

Permutation

Does this program type-check? Does it get stuck?

(λx:{l1:int, l2:int}. x.l1 + x.l2){l2=3; l1=4}

Suggests permutation subtyping:

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

Example with width and permutation: Show
· � {l1=7, l2=8, l3=9} : {l2:int, l1:int}

It’s no longer clear there is an (efficient, sound, complete)
type-checking algorithm

� They sometimes exist and sometimes don’t

� Here they do

Dan Grossman CSE505 Winter 2012, Lecture 14 8

Transitivity

Subtyping is always transitive, so add a rule for that:

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

Or just use the subsumption rule multiple times. Or both.

In any case, type-checking is no longer syntax-directed: There may
be 0, 1, or many different derivations of Γ � e : τ

� And also potentially many ways to show τ1 ≤ τ2

Hopefully we could define an algorithm and prove it “answers yes”
if and only if there exists a derivation

Dan Grossman CSE505 Winter 2012, Lecture 14 9

Digression: Efficiency

With our semantics, width and permutation subtyping make
perfect sense

But it would be nice to compile e.l down to:

1. evaluate e to a record stored at an address a

2. load a into a register r1

3. load field l from a fixed offset (e.g., 4) into r2

Many type systems are engineered to make this easy for compiler
writers

Makes restrictions seem odd if you do not know techniques for
implementing high-level languages

Dan Grossman CSE505 Winter 2012, Lecture 14 10

Digression continued

With width subtyping alone, the strategy is easy

With permutation subtyping alone, it’s easy but have to
“alphabetize”

With both, it’s not easy. . .
f1 : {l1 : int} → int f2 : {l2 : int} → int
x1 = {l1 = 0, l2 = 0} x2 = {l2 = 0, l3 = 0}
f1(x1) f2(x1) f2(x2)

Can use dictionary-passing (look up offset at run-time) and maybe
optimize away (some) lookups

Named types can avoid this, but make code less flexible

Dan Grossman CSE505 Winter 2012, Lecture 14 11

So far

� A new subtyping judgement and a new typing rule
subsumption

� Width, permutation, and transitivity

τ1 ≤ τ2 {l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

Γ � e : τ
Γ � e : τ ′ τ ′ ≤ τ

Γ � e : τ

Now: This is all much more useful if we extend subtyping so it can
be used on “parts” of larger types:

� Example: Can’t yet use subsumption on a record field’s type

� Example: There are no supertypes yet of τ1 → τ2
Dan Grossman CSE505 Winter 2012, Lecture 14 12

Depth

Does this program type-check? Does it get stuck?

(λx:{l1:{l3:int}, l2:int}. x.l1.l3 + x.l2){l1={l3=3, l4=9}, l2=4}

Suggests depth subtyping

τi ≤ τ ′
i

{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ ′
i , . . . , ln:τn}

(With permutation subtyping, can just have depth on left-most field)

Soundness of this rule depends crucially on fields being immutable!

� Depth subtyping is unsound in the presence of mutation

� Trade-off between power (mutation) and sound expressiveness
(depth subtyping)

� Homework 4 explores mutation and subtyping

Dan Grossman CSE505 Winter 2012, Lecture 14 13

Function subtyping

Given our rich subtyping on records (and/or other primitives), how
do we extend it to other types, notably τ1 → τ2?

For example, we’d like int → {l1:int, l2:int} ≤ int → {l1:int}
so we can pass a function of the subtype somewhere expecting a
function of the supertype

???

τ1 → τ2 ≤ τ3 → τ4

For a function to have type τ3 → τ4 it must return something of
type τ4 (including subtypes) whenever given something of type τ3
(including subtypes). A function assuming less than τ3 will do, but
not one assuming more. A function returning more than τ4 but
not one returning less.

Dan Grossman CSE505 Winter 2012, Lecture 14 14

Function subtyping, cont’d

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4
Also want:

τ ≤ τ

Example: λx : {l1:int, l2:int}. {l1 = x.l2, l2 = x.l1}
can have type {l1:int, l2:int, l3:int} → {l1:int}
but not {l1:int} → {l1:int}

Jargon: Function types are contravariant in their argument and
covariant in their result

� Depth subtyping means immutable records are covariant in
their fields

This is unintuitive enough that you, a friend, or a manager, will
some day be convinced that functions can be covariant in their
arguments. THIS IS ALWAYS WRONG (UNSOUND).

Dan Grossman CSE505 Winter 2012, Lecture 14 15

Summary of subtyping rules

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3 τ ≤ τ

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

τi ≤ τ ′
i

{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ ′
i , . . . , ln:τn}

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4

Notes:
� As always, elegantly handles arbitrarily large syntax (types)
� For other types, e.g., sums or pairs, would have more rules,

deciding carefully about co/contravariance of each position
Dan Grossman CSE505 Winter 2012, Lecture 14 16

Maintaining soundness

Our Preservation and Progress Lemmas still “work” in the
presence of subsumption

� So in theory, any subtyping mistakes would be caught when
trying to prove soundness!

In fact, it seems too easy: induction on typing derivations makes
the subsumption case easy:

� Progress: One new case if typing derivation · � e : τ ends
with subsumption. Then · � e : τ ′ via a shorter derivation, so
by induction a value or takes a step.

� Preservation: One new case if typing derivation · � e : τ ends
with subsumption. Then · � e : τ ′ via a shorter derivation, so
by induction if e → e′ then · � e′ : τ ′. So use subsumption
to derive · � e′ : τ .

Hmm...

Dan Grossman CSE505 Winter 2012, Lecture 14 17

Ah, Canonical Forms

That’s because Canonical Forms is where the action is:

� If · � v : {l1:τ1, . . . , ln:τn}, then v is a record with fields
l1, . . . , ln

� If · � v : τ1 → τ2, then v is a function

We need these for the “interesting” cases of Progress

Now have to use induction on the typing derivation (may end with
many subsumptions) and induction on the subtyping derivation
(e.g., “going up the derivation” only adds fields)

� Canonical Forms is typically trivial without subtyping; now it
requires some work

Note: Without subtyping, Preservation is a little “cleaner” via
induction on e → e′, but with subtyping it’s much cleaner via
induction on the typing derivation

� That’s why we did it that way

Dan Grossman CSE505 Winter 2012, Lecture 14 18

A matter of opinion?

If subsumption makes well-typed terms get stuck, it is wrong

We might allow less subsumption (e.g., for efficiency), but we shall
not allow more than is sound

But we have been discussing “subset semantics” in which e : τ
and τ ≤ τ ′ means e is a τ ′

� There are “fewer” values of type τ than of type τ ′, but not
really

Very tempting to go beyond this, but you must be very careful. . .

But first we need to emphasize a really nice property of our current
setup: Types never affect run-time behavior

Dan Grossman CSE505 Winter 2012, Lecture 14 19

Erasure

A program type-checks or does not. If it does, it evaluates just like
in the untyped λ-calculus. More formally, we have:

1. Our language with types (e.g., λx : τ . e, Aτ1+τ2(e), etc.)
and a semantics

2. Our language without types (e.g., λx. e, A(e), etc.) and a
different (but very similar) semantics

3. An erasure metafunction from first language to second

4. An equivalence theorem: Erasure commutes with evaluation

This useful (for reasoning and efficiency) fact will be less obvious
(but true) with parametric polymorphism

Dan Grossman CSE505 Winter 2012, Lecture 14 20

Coercion Semantics

Wouldn’t it be great if. . .

� int ≤ float

� int ≤ {l1:int}
� τ ≤ string

� we could “overload the cast operator”

For these proposed τ ≤ τ ′ relationships, we need a run-time
action to turn a τ into a τ ′

� Called a coercion

Could use float_of_int and similar but programmers whine
about it

Dan Grossman CSE505 Winter 2012, Lecture 14 21

Implementing Coercions

If coercion C (e.g., float_of_int) “witnesses” τ ≤ τ ′ (e.g.,
int ≤ float), then we insert C where τ is subsumed to τ ′

So translation to the untyped language depends on where
subsumption is used. So it’s from typing derivations to programs.

But typing derivations aren’t unique: uh-oh

Example 1:

� Suppose int ≤ float and τ ≤ string

� Consider · � print string(34) : unit

Example 2:

� Suppose int ≤ {l1:int}
� Consider 34 == 34, where == is equality on ints or pointers

Dan Grossman CSE505 Winter 2012, Lecture 14 22

Coherence

Coercions need to be coherent, meaning they don’t have these
problems

More formally, programs are deterministic even though type
checking is not—any typing derivation for e translates to an
equivalent program

Alternately, can make (complicated) rules about where
subsumption occurs and which subtyping rules take precedence

� Hard to understand, remember, implement correctly

It’s a mess. . .

Dan Grossman CSE505 Winter 2012, Lecture 14 23

C++

Semi-Example: Multiple inheritance a la C++

class C2 {};

class C3 {};

class C1 : public C2, public C3 {};

class D {

public: int f(class C2) { return 0; }

int f(class C3) { return 1; }

};

int main() { return D().f(C1()); }

Note: A compile-time error “ambiguous call”

Note: Same in Java with interfaces (“reference is ambiguous”)

Dan Grossman CSE505 Winter 2012, Lecture 14 24

Upcasts and Downcasts

� “Subset” subtyping allows “upcasts”

� “Coercive subtyping” allows casts with run-time effect

� What about “downcasts”?

That is, should we have something like:

if_hastype(τ ,e1) then x. e2 else e3

Roughly, if at run-time e1 has type τ (or a subtype), then bind it
to x and evaluate e2. Else evaluate e3. Avoids having exceptions.

� Not hard to formalize

Dan Grossman CSE505 Winter 2012, Lecture 14 25

Downcasts

Can’t deny downcasts exist, but here are some bad things about
them:

� Types don’t erase – you need to represent τ and e1’s type at
run-time. (Hidden data fields)

� Breaks abstractions: Before, passing {l1 = 3, l2 = 4} to a
function taking {l1 : int} hid the l2 field, so you know it
doesn’t change or affect the callee

Some better alternatives:

� Use ML-style datatypes — the programmer decides which
data should have tags

� Use parametric polymorphism — the right way to do
container types (not downcasting results)

Dan Grossman CSE505 Winter 2012, Lecture 14 26

