Review

CSE505: Graduate Programming Languages

Lecture 8 — Reduction Strategies; Substitution

Dan Grossman Winter 2012

$$\lambda$$
-calculus syntax:

$$e ::= \lambda x. e \mid x \mid e e \ v ::= \lambda x. e$$

Call-By-Value Left-To-Right Small-Step Operational Semantics:

$$e \rightarrow e'$$

$$\frac{1}{(\lambda x. \ e) \ v \to e[v/x]} \quad \frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2} \quad \frac{e_2 \to e_2'}{v \ e_2 \to v \ e_2'}$$

Previously wrote the first rule as follows:

$$\frac{e[v/x] = e'}{(\lambda x. e) \ v \to e}$$

- ► The more concise axiom is more common
- But the more verbose version fits better with how we will formally define substitution at the end of this lecture

CSE505 Winter 2012. Lecture 8

Other Reduction "Strategies"

Suppose we allowed any substitution to take place in any order:

e
ightarrow e'

 $\frac{e_1 \to e'_1}{(\lambda x. e) e' \to e[e'/x]} \qquad \frac{e_1 \to e'_1}{e_1 e_2 \to e'_1 e_2} \qquad \frac{e_2 \to e'_2}{e_1 e_2 \to e_1 e'_2}$ $\frac{e \to e'}{\lambda x. e \to \lambda x. e'}$

Programming languages don't typically do this, but it has uses:

- Optimize/pessimize/partially evaluate programs
- Prove programs equivalent by reducing them to the same term

CSE505 Winter 2012. Lecture 8

Equivalence via rewriting

Dan Grossma

We can add two more rewriting rules:

▶ Replace λx . e with λy . e' where e' is e with "free" x replaced with y

 $\overline{\lambda x. \ e
ightarrow \lambda y. \ e[y/x]}$

• Replace $\lambda x. e x$ with e if x does not occur "free" in e

 $\frac{x \text{ is not free in } e}{\lambda x. \ e \ x \to e}$

Analogies: if e then true else false List.map (fun x -> f x) lst

But beware side-effects/non-termination under call-by-value

Church-Rosser

The order in which you reduce is a "strategy"

Non-obvious fact — "Confluence" or "Church-Rosser": In this pure calculus,

If $e \to^* e_1$ and $e \to^* e_2$, then there exists an e_3 such that $e_1 \to^* e_3$ and $e_2 \to^* e_3$

"No strategy gets painted into a corner"

 Useful: No rewriting via the full-reduction rules prevents you from getting an answer (Wow!)

CSE505 Winter 2012 Lecture

Any *rewriting system* with this property is said to, "have the Church-Rosser property"

No more rules to add

Now consider the system with:

- The 4 rules on slide 3
- The 2 rules on slide 5
- Rules can also run backwards (rewrite right-side to left-side)

Amazing: Under the natural denotational semantics (basically treat lambdas as functions), e and e' denote the same thing if and only if this rewriting system can show $e \to^* e'$

- So the rules are sound, meaning they respect the semantics
- So the rules are *complete*, meaning there is no need to add any more rules in order to show some equivalence they can't

But program equivalence in a Turing-complete PL is undecidable

 So there is no perfect (always terminates, always correctly says yes or no) rewriting strategy for equivalence

CSE505 Winter 2012, Lecture 8

Some other common semantics	More on evaluation order
We have seen "full reduction" and left-to-right CBV (Caml is unspecified order, but actually right-to-left) 	In "purely functional" code, evaluation order matters "only" for performance and termination
Claim: Without assignment, I/O, exceptions,, you cannot distinguish left-to-right CBV from right-to-left CBV How would you prove this equivalence? (Hint: Lecture 6)	<pre>Example: Imagine CBV for conditionals! let rec f n = if n=0 then 1 else n*(f (n-1)) Call-by-need or "lazy evaluation":</pre>
Another option: call-by-name (CBN) — even "smaller" than CBV! $e_1 \rightarrow e'$	 Evaluate the argument the first time it's used and memoize the result Useful idiom for programmers too
$\frac{e_1 \to e'_1}{(\lambda x. e) \ e' \to e[e'/x]} \qquad \frac{e_1 \to e'_1}{e_1 \ e_2 \to e'_1 \ e_2}$ Diverges strictly less often than CBV, e.g., $(\lambda y. \ \lambda z. \ z) \ e$	 Best of both worlds? For purely functional code, total equivalence with CBN and asymptotically no slower than CBV. (Note: asymptotic!)
Can be faster (fewer steps), but not usually (reuse args)	But hard to reason about side-effects
Dan Grossman CSE505 Winter 2012, Lecture 8 7	Dan Grossman CSE505 Winter 2012, Lecture 8 8
More on Call-By-Need	Formalism not done yet
This course will mostly assume Call-By-Value	Need to define substitution (used in our function-call rule) Shockingly subtle
Haskell uses Call-By-Need	Informally: $e[e'/x]$ "replaces occurrences of x in e with e' "
Example:	
<pre>four = length (9:(8+5):17:42:[]) eight = four + four main = do { putStrLn (show eight) }</pre>	Examples: $x[(\lambda y.\ y)/x] = \lambda y.\ y$
Example:	$(\lambda y. \; y \; x)[(\lambda z. \; z)/x] = \lambda y. \; y \; \lambda z. \; z$
ones = 1 : ones nats_from x = x : (nats_from (x + 1))	$(x \; x)[(\lambda x. \; x \; x)/x] = (\lambda x. \; x \; x)(\lambda x. \; x \; x)$
Dan Grossman CSE505 Winter 2012, Lecture 8 9	Dan Grossman CSE505 Winter 2012, Lecture 8 10
Substitution gone wrong Attempt #1:	Substitution gone wrong: Attempt #2 $e_1[e_2/x] = e_3$
$e_1[e_2/x] = e_3$ $y \neq x$ $e_1[e/x] = e'_1$	$\overline{x[e/x]=e}$ $rac{y eq x}{y[e/x]=y}$ $rac{e_1[e/x]=e_1'$ $y eq x}{(\lambda y.\ e_1)[e/x]=\lambda y.\ e_1'}$
$\overline{x[e/x] = e} \qquad \frac{y \neq x}{y[e/x] = y} \qquad \frac{e_1[e/x] = e'_1}{(\lambda y. e_1)[e/x] = \lambda y. e'_1}$ $e_1[e/x] = e'_1 \qquad e_2[e/x] = e'_2$	$\frac{(\lambda x. e_1)[e/x] = \lambda x. e_1}{(\lambda x. e_1)[e/x] = \lambda x. e_1} \qquad \frac{e_1[e/x] = e'_1 \qquad e_2[e/x] = e'_2}{(e_1 e_2)[e/x] = e'_1 e'_2}$
$rac{e_1[e/x]=e_1' e_2[e/x]=e_2'}{(e_1 \; e_2)[e/x]=e_1'\; e_2'}$	Recursively replace every $m{x}$ leaf with $m{e}$ but respect shadowing
Recursively replace every x leaf with e	Substituting into (nested) functions is still wrong: If e uses an outer y , then substitution <i>captures</i> y (actual technical name)
The rule for substituting into (nested) functions is wrong: If the function's argument binds the same variable (shadowing), we should not change the function's body	 Example program capturing y: (λx. λy. x) (λz. y) → λy. (λz. y) Different(!) from: (λa. λb. a) (λz. y) → λb. (λz. y) Capture won't happen under CBV/CBN <i>if</i> our source program
Example program: $(\lambda x.\ \lambda x.\ x)$ 42	has no free variables, but can happen under full reduction

Example program: $(\lambda x. \ \lambda x. \ x)$ 42Dan GrossmanCSE505 Winter 2012, Lecture 8

Dan Grossman

11

CSE505 Winter 2012, Lecture 8

12

Attempt #3

First define the "free variables of an expression" FV(e):

$$FV(x) = \{x\}$$

 $FV(e_1 e_2) = FV(e_1) \cup FV(e_2)$
 $FV(\lambda x. e) = FV(e) - \{x\}$

But this is a *partial* definition

Could get stuck if there is no substitution

Correct Substitution

Assume *implicit* systematic renaming of a binding and all its bound occurrences

CSE505 Winter 2012. Lecture 8

Lets one rule match any substitution into a function

And these rules:

Some jargon

Dan Grossman

If you want to study/read PL research, some jargon for things we have studied is helpful...

CSE505 Winter 2012. Lecture 8

- Implicit systematic renaming is α-conversion. If renaming in e₁ can produce e₂, then e₁ and e₂ are α-equivalent.
 α-equivalence is an equivalence relation
- Replacing $(\lambda x. e_1) e_2$ with $e_1[e_2/x]$, i.e., doing a function call, is a β -reduction
 - (The reverse step is meaning-preserving, but unusual)
- Replacing λx. e x with e is an η-reduction or η-contraction (since it's always smaller)
- Replacing e with e with λx. e x is an η-expansion
 It can delay evaluation of e under CBV
 - It is sometimes necessary in languages (e.g., Caml does not treat constructors as first-class functions)

CSE505 Winter 2012, Lecture 8

Implicit Renaming

(e)

- \blacktriangleright A partial definition because of the syntactic accident that y was used as a binder
 - Choice of local names should be irrelevant/invisible
- So we allow *implicit systematic renaming* of a binding and all its bound occurrences
- So via renaming the rule with $y \neq x$ can *always* apply and we can remove the rule where x is shadowed
- In general, we *never* distinguish terms that differ only in the names of variables (A key language-design principle!)
- So now even "different syntax trees" can be the "same term"
 Treat particular choice of variable as a concrete-syntax thing

More explicit approach

While everyone in PL:

Dan Gros

- Understands the capture problem
- Avoids it via implicit systematic renaming

you may find that unsatisfying, especially if you have to implement substitution and full reduction in a meta-language that doesn't have implicit renaming

This more explicit version also works

$$\frac{z \neq x \quad z \notin FV(e_1) \quad z \notin FV(e) \quad e_1[z/y] = e'_1 \quad e'_1[e/x] = e''_1}{(\lambda y. \ e_1)[e/x] = \lambda z. \ e''_1}$$

 You have to find an appropriate z, but one always exists and __\$compilerGenerated appended to a global counter works

CSE505 Winter 2012 Lecture 8