Review

λ-calculus syntax

$$
\begin{aligned}
& e::=\lambda x . e|x| e e \\
& v::=\lambda x . e
\end{aligned}
$$

Call-By-Value Left-To-Right Small-Step Operational Semantics:

$$
e \rightarrow e^{\prime}
$$

$$
\overline{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}
$$

Previously wrote the first rule as follows:

$$
\frac{e[v / x]=e^{\prime}}{(\lambda x . e) v \rightarrow e^{\prime}}
$$

- The more concise axiom is more common
- But the more verbose version fits better with how we will formally define substitution at the end of this lecture

Church-Rosser

The order in which you reduce is a "strategy"
Non-obvious fact - "Confluence" or "Church-Rosser":
In this pure calculus,

$$
\text { If } e \rightarrow^{*} e_{1} \text { and } e \rightarrow^{*} e_{2} \text {, }
$$

then there exists an e_{3} such that $e_{1} \rightarrow^{*} e_{3}$ and $e_{2} \rightarrow^{*} e_{3}$
"No strategy gets painted into a corner"

- Useful: No rewriting via the full-reduction rules prevents you from getting an answer (Wow!)

Any rewriting system with this property is said to, "have the Church-Rosser property"

Equivalence via rewriting

We can add two more rewriting rules:

- Replace λx. e with $\lambda y . e^{\prime}$ where e^{\prime} is e with "free" x replaced with \boldsymbol{y} (assuming \boldsymbol{y} not already used in \boldsymbol{e})

$$
\overline{\lambda x . e \rightarrow \lambda y . e[y / x]}
$$

- Replace $\lambda \boldsymbol{x}$. $e x$ with e if x does not occur "free" in e

$$
\frac{\boldsymbol{x} \text { is not free in } \boldsymbol{e}}{\boldsymbol{\lambda x} \cdot \boldsymbol{e} \boldsymbol{x} \rightarrow \boldsymbol{e}}
$$

Analogies: if e then true else false
 List.map (fun x-> f x) lst

But beware side-effects/non-termination under call-by-value

No more rules to add

Now consider the system with:

- The 4 rules on slide 3
- The 2 rules on slide 5
- Rules can also run backwards (rewrite right-side to left-side)

Amazing: Under the natural denotational semantics (basically treat lambdas as functions), e and e^{\prime} denote the same thing if and only if this rewriting system can show $e \rightarrow^{*} e^{\prime}$

- So the rules are sound, meaning they respect the semantics
- So the rules are complete, meaning there is no need to add any more rules in order to show some equivalence they can't

But program equivalence in a Turing-complete PL is undecidable

- So there is no perfect (always terminates, always correctly says yes or no) rewriting strategy for equivalence

Some other common semantics

We have seen "full reduction" and left-to-right CBV

- (OCaml is unspecified order, but actually right-to-left)

Claim: Without assignment, I/O, exceptions,, you cannot distinguish left-to-right CBV from right-to-left CBV

- How would you prove this equivalence? (Hint: Lecture 6)

Another option: call-by-name (CBN) — even "smaller" than CBV!
$e \rightarrow e^{\prime}$

$$
\overline{(\lambda x . e) e^{\prime} \rightarrow e\left[e^{\prime} / x\right]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

Diverges strictly less often than CBV, e.g., $(\boldsymbol{\lambda} \boldsymbol{y} . \boldsymbol{\lambda} \boldsymbol{z} . \boldsymbol{z}) \boldsymbol{e}$
Can be faster (fewer steps), but not usually (reuse args)

More on evaluation order

In "purely functional" code, evaluation order matters "only" for performance and termination

Example: Imagine CBV for conditionals! let rec $f \mathrm{n}=$ if $\mathrm{n}=0$ then 1 else $\mathrm{n} *(\mathrm{f}(\mathrm{n}-1))$

Call-by-need or "lazy evaluation":

- Evaluate the argument the first time it's used and memoize the result
- Useful idiom for programmers too

Best of both worlds?

- For purely functional code, total equivalence with CBN and asymptotically no slower than CBV. (Note: asymptotic!)
- But hard to reason about side-effects

More on Call-By-Need

This course will mostly assume Call-By-Value
Haskell uses Call-By-Need
Example:

```
four = length (9:(8+5):17:42:[])
eight = four + four
main = do { putStrLn (show eight) }
```

Example:

```
ones = 1 : ones
nats_from x = x : (nats_from (x + 1))
```


Formalism not done yet

Need to define substitution (used in our function-call rule)

- Shockingly subtle

Informally: $e\left[e^{\prime} / x\right]$ "replaces occurrences of x in e with $e^{\prime "}$
Examples:

$$
x[(\lambda y \cdot y) / x]=\lambda y . y
$$

$(\lambda y . y x)[(\lambda z . z) / x]=\lambda y . y \lambda z . z$

$$
(x x)[(\lambda x . x x) / x]=(\lambda x . x x)(\lambda x . x x)
$$

Substitution gone wrong
Attempt \#1:

$$
\begin{array}{cc}
\hline e_{1}\left[e_{2} / x\right]=e_{3} & \\
\frac{y \neq x}{x[e / x]=e} \quad \frac{e_{1}[e / x]=e_{1}^{\prime}}{y[e / x]=y} \quad \frac{e_{2}[e / x]=e_{2}^{\prime}}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}} \\
& \frac{e_{1}[e / x]=e_{1}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}}
\end{array}
$$

Recursively replace every \boldsymbol{x} leaf with \boldsymbol{e}

The rule for substituting into (nested) functions is wrong: If the function's argument binds the same variable (shadowing), we should not change the function's body

Example program: $(\lambda x, \lambda x, x) 42$

Substitution gone wrong: Attempt \#2

$$
e_{1}\left[e_{2} / x\right]=e_{3}
$$

$$
\overline{x[e / x]=e} \quad \frac{y \neq x}{y[e / x]=y} \quad \frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}}
$$

$\left.\overline{(\lambda x .} e_{1}\right)[e / x]=\lambda x . e_{1}$

$$
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad e_{2}[e / x]=e_{2}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}}
$$

Recursively replace every \boldsymbol{x} leaf with \boldsymbol{e} but respect shadowing
Substituting into (nested) functions is still wrong: If e uses an outer \boldsymbol{y}, then substitution captures \boldsymbol{y} (actual technical name)

- Example program capturing y :
$(\lambda x . \lambda y . x)(\lambda z . y) \rightarrow \lambda y .(\lambda z . y)$
- Different(!) from: ($\lambda a . \lambda b . a)(\lambda z . y) \rightarrow \lambda b .(\lambda z . y)$
- Capture won't happen under CBV/CBN if our source program has no free variables, but can happen under full reduction

Attempt \#3

First define the "free variables of an expression" $\boldsymbol{F V}(e)$:

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V\left(e_{1} e_{2}\right) & =\boldsymbol{F V}\left(e_{1}\right) \cup \boldsymbol{F V}\left(e_{2}\right) \\
\boldsymbol{F V}(\lambda x . e) & =\boldsymbol{F V}(e)-\{x\}
\end{aligned}
$$

$$
e_{1}\left[e_{2} / x\right]=e_{3}
$$

$$
\overline{x[e / x]=e} \quad \frac{y \neq x}{y[e / x]=y} \quad \frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x \quad y \notin F V(e)}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}}
$$

$$
\overline{\left(\lambda x . e_{1}\right)[e / x]=\lambda x . e_{1}}
$$

$$
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad e_{2}[e / x]=e_{2}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}}
$$

But this is a partial definition

- Could get stuck if there is no substitution
- A partial definition because of the syntactic accident that \boldsymbol{y} was used as a binder
- Choice of local names should be irrelevant/invisible
- So we allow implicit systematic renaming of a binding and all its bound occurrences
- So via renaming the rule with $\boldsymbol{y} \neq \boldsymbol{x}$ can always apply and we can remove the rule where \boldsymbol{x} is shadowed
- In general, we never distinguish terms that differ only in the names of variables (A key language-design principle!)
- So now even "different syntax trees" can be the "same term"
- Treat particular choice of variable as a concrete-syntax thing

Correct Substitution

Assume implicit systematic renaming of a binding and all its bound occurrences

- Lets one rule match any substitution into a function

And these rules:

$$
\begin{gathered}
\frac{e_{1}\left[e_{2} / x\right]=e_{3}}{x[e / x]=e} \quad \frac{y \neq x}{y[e / x]=y} \quad \frac{e_{1}[e / x]=e_{1}^{\prime} \quad e_{2}[e / x]=e_{2}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}} \\
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x \quad y \notin F V(e)}{\left(\lambda y . e_{1}\right)[e / x]=\lambda y . e_{1}^{\prime}}
\end{gathered}
$$

More explicit approach

While everyone in PL:

- Understands the capture problem
- Avoids it via implicit systematic renaming
you may find that unsatisfying, especially if you have to implement substitution and full reduction in a meta-language that doesn't have implicit renaming

This more explicit version also works

$$
\frac{z \neq x \quad z \notin F V\left(e_{1}\right) \quad z \notin F V(e) \quad e_{1}[z / y]=e_{1}^{\prime} \quad e_{1}^{\prime}[e / x]=e_{1}^{\prime \prime}}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda z \cdot e_{1}^{\prime \prime}}
$$

- You have to find an appropriate \boldsymbol{z}, but one always exists and __\$compilerGenerated appended to a global counter works

Some jargon

If you want to study/read PL research, some jargon for things we have studied is helpful...

- Implicit systematic renaming is α-conversion. If renaming in e_{1} can produce e_{2}, then \boldsymbol{e}_{1} and e_{2} are α-equivalent.
- $\boldsymbol{\alpha}$-equivalence is an equivalence relation
- Replacing $\left(\boldsymbol{\lambda} x . e_{1}\right) e_{2}$ with $e_{1}\left[e_{2} / x\right]$, i.e., doing a function call, is a $\boldsymbol{\beta}$-reduction
- (The reverse step is meaning-preserving, but unusual)
- Replacing $\boldsymbol{\lambda} \boldsymbol{x}$. $\boldsymbol{e} \boldsymbol{x}$ with \boldsymbol{e} is an $\boldsymbol{\eta}$-reduction or $\boldsymbol{\eta}$-contraction (since it's always smaller)
- Replacing \boldsymbol{e} with \boldsymbol{e} with $\boldsymbol{\lambda} \boldsymbol{x}$. $\boldsymbol{e} \boldsymbol{x}$ is an $\boldsymbol{\eta}$-expansion
- It can delay evaluation of e under CBV
- It is sometimes necessary in languages (e.g., OCaml does not treat constructors as first-class functions)

