
CSE 505: Programming Languages

Lecture 10 — Types

Zach Tatlock
Fall 2013

What Are We Doing?

Covered a lot of ground! Easy to lose sight of the big picture.

Zach Tatlock CSE 505 Fall 2013, Lecture 10 2

The Big Picture

Building Sweet Skills:
I Defining languages and semantics

I Grammars and inductive definitions
I Abstract vs. concrete syntax

I Formal proofs and structural induction

I Invariants, determinism, equivalence
I Lambda calculus

I Small, simple model of computation

Onward and Upward!

I Today: TYPES!

I What do they do?

I Why do we want them?

I How do we formalize them?

I What makes a good type system?

Zach Tatlock CSE 505 Fall 2013, Lecture 10 3

Types

Types are a major new topic worthy of a lifetime’s study

I Continue to use (CBV) Lambda Caluclus as our core model

I But will soon enrich with other common primitives

Today:

I Motivation for type systems
I What a type system is designed to do and not do

I Vocab: definition of stuckness, soundness, completeness, etc.

I The Simply-Typed Lambda Calculus
I A basic and natural type system
I Starting point for more expressiveness later

Zach Tatlock CSE 505 Fall 2013, Lecture 10 4

Quick Review: L-to-R CBV Lambda Calculus

e ::= λx. e | x | e e
v ::= λx. e

Implicit systematic renaming of bound variables
I α-equivalence on expressions (“the same term”)

e→ e′

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

e1[e/x] = e′1 y 6= x y 6∈ FV (e)

(λy. e1)[e/x] = λy. e′1

Zach Tatlock CSE 505 Fall 2013, Lecture 10 5

Introduction to Types

Aren’t more powerful PLs are always better?

I Turing Complete so we can do anything (λ-Calculus / x86)

I Super flexible (e.g., higer order functions)

I Conveniences to keep programs short (concision is king!)

If so, types are taking us in the wrong direction!

I Type systems restrict which programs we can write :(

I If types are any good, must help in some other PL dimension...

Zach Tatlock CSE 505 Fall 2013, Lecture 10 6

Why types?

Zach Tatlock CSE 505 Fall 2013, Lecture 10 7

Why types? Let’s think about it...

This is a game called “read the professor’s mind.”

Zach Tatlock CSE 505 Fall 2013, Lecture 10 8

Why types? (Part 1/∞)

1. Catch “stupid” mistakes early, even before testing!
I Example: “if” applied to “mkpair”
I Stupid, too-clever occasionally indistinguishable (ptr xor)

Zach Tatlock CSE 505 Fall 2013, Lecture 10 9

Why types? (Part 2/∞)

2. (Safety) Prevent getting stuck (e.g., x v)
I Ensure execution never gets to a “meaningless” state
I But “meaningless” depends on the semantics
I PLs typically have some type errors, others run-time errors

You’re gonna do it anyway...

As our system has grown, a lot of the logic in our Ruby system
sort of replicates a type system... I think it may just be a
property of large systems in dynamic languages, that eventually
you end up rewriting your own type system, and you sort of do
it badly. Youre checking for null values all over the place.
Theres lots of calls to Rubys kind of? method, which asks, Is
this a kind of User object? Because thats what were expecting.
If we dont get that, this is going to explode. It is a shame to
have to write all that when there is a solution that has existed
in the world of programming languages for decades now.

– Alex Payne (Twitter Dude)

Zach Tatlock CSE 505 Fall 2013, Lecture 10 10

Why types? (Part 3/∞)

3. Help our compiler bros out a bit
I “filter” between AST and compiler/interpreter
I Strengthen compiler assumptions, help optimizer
I Don’t have to check for impossible states
I Orthogonal to safety (e.g. C/C++)

4. Enforce encapsulation (an abstract type)
I Clients can’t break invariants
I Hide implementation (now can change list/pair)
I Requires safety, meaning no “stuck” states that corrupt

run-time (e.g., C/C++)
I Can enforce encapsulation without static types, but types are a

particularly nice way

5. Syntactic overloading
I Have symbol lookup depend on operands’ types
I Only modestly interesting semantically
I Late binding (lookup via run-time types) more interesting

Zach Tatlock CSE 505 Fall 2013, Lecture 10 11

What is a type system?

Zach Tatlock CSE 505 Fall 2013, Lecture 10 12

What isn’t a type system?

Appel’s Axiom:

The difference between a program analysis and a type
system is that when a type system rejects a program it’s
the programmer’s fault.

Zach Tatlock CSE 505 Fall 2013, Lecture 10 13

What is a type system?

Er, uh, you know it when you see it. Some clues:
I A decidable (?) judgment for classifying programs

I E.g., e1 + e2 has type int if e1, e2 have type int (else no type)

I A sound (?) abstraction of computation
I E.g., if e1 + e2 has type int, then evaluation produces an int

(with caveats!))

I Fairly syntax directed
I Non-example (?): e terminates within 100 steps

I Particularly fuzzy distinctions with abstract interpretation
I Often a more natural framework for flow-sensitive properties
I Types often more natural for higher-order programs

This is a CS-centric, PL-centric view.

I Foundational type theory has more rigorous answers :)

I Type systems have a long history...

Zach Tatlock CSE 505 Fall 2013, Lecture 10 14

Roots in Paradox

Let R = {x | x 6∈ x}, then
R ∈ R ⇐⇒ R 6∈ R

The barber is a man in a town who
shaves exactly those men who do not
shave themselves. All men in this town
are clean shaven.

Who shaves the barber?

And thus type theory was born ...

Zach Tatlock CSE 505 Fall 2013, Lecture 10 15

Adding constants

Enrich the Lambda Calculus with integer constants:

I Not stricly necessary, but makes types seem more natural

e ::= λx. e | x | e e | c
v ::= λx. e | c

No new operational-semantics rules since constants are values

We could add + and other primitives

I Then we would need new rules (e.g., 3 small-step for +)
I Alternately, parameterize “programs” by primitives:
λplus. λtimes. ... e

I Like Pervasives in OCaml
I A great way to keep language definitions small

Zach Tatlock CSE 505 Fall 2013, Lecture 10 16

Stuck

Key issue: can a program “get stuck” (reach a “bad” state)?

I Definition: e is stuck if e is not a value and there is no e′

such that e→ e′

I Definition: e can get stuck if there exists an e′ such that
e→∗ e′ and e′ is stuck

I In a deterministic language, e “gets stuck”

Most people don’t appreciate that stuckness depends on the
operational semantics

I Inherent given the definitions above

Zach Tatlock CSE 505 Fall 2013, Lecture 10 17

What’s stuck?

Given our language, what are the set of stuck expressions?

I Note: Explicitly defining the stuck states is unusual

e ::= λx. e | x | e e | c
v ::= λx. e | c

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

(Hint: The full set is recursively defined.)

S ::= x | c v | S e | v S

Note: Can have fewer stuck states if we add more rules

I Example: Javascript

I Example:
c v → v

I In unsafe languages, stuck states can set the computer on fire

Zach Tatlock CSE 505 Fall 2013, Lecture 10 18

Soundness and Completeness

A type system is a judgment for classifying programs
I “accepts” a program if some complete derivation gives it a

type, else “rejects”

A sound type system never accepts a program that can get stuck
I No false negatives

A complete type system never rejects a program that can’t get stuck
I No false positives

It is typically undecidable whether a stuck state can be reachable
I Corollary: If we want an algorithm for deciding if a type

system accepts a program, then the type system cannot be
sound and complete

I We’ll choose soundness, try to reduce false positives in
practice

Note soundness/completeness depends on the type-system
definition (obviously) and the operational semantics (see definition
of stuckness)

Zach Tatlock CSE 505 Fall 2013, Lecture 10 19

Wrong Attempt

τ ::= int | fn

` e : τ

` λx. e : fn ` c : int

` e1 : fn ` e2 : int

` e1 e2 : int

1. NO: can get stuck, e.g., (λx. y) 3

2. NO: too restrictive, e.g., (λx. x 3) (λy. y)

3. NO: types not preserved, e.g., (λx. λy. y) 3

Zach Tatlock CSE 505 Fall 2013, Lecture 10 20

Getting it right

1. Need to type-check function bodies, which have free variables

2. Need to classify functions using argument and result types

For (1): Γ ::= · | Γ, x : τ and Γ ` e : τ

I Require whole program to type-check under empty context ·

For (2): τ ::= int | τ → τ

I An infinite number of types:
int→ int, (int→ int)→ int, int→ (int→ int), ...

Concrete syntax note: → is right-associative, so
τ1 → τ2 → τ3 is τ1 → (τ2 → τ3)

Zach Tatlock CSE 505 Fall 2013, Lecture 10 21

STLC Type System

τ ::= int | τ → τ
Γ ::= · | Γ, x:τ

Γ ` e : τ

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

The function-introduction rule is the interesting one...

Zach Tatlock CSE 505 Fall 2013, Lecture 10 22

A closer look

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Where did τ1 come from?

I Our rule “inferred” or “guessed” it

I To be syntax directed, change λx. e to λx : τ . e
and use that τ

Can think of “adding x” as shadowing or requiring x 6∈ Dom(Γ)

I Systematic renaming (α-conversion) ensures x 6∈ Dom(Γ) is
not a problem

Zach Tatlock CSE 505 Fall 2013, Lecture 10 23

A closer look

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Is our type system too restrictive?

I That’s a matter of opinion

I But it does reject programs that don’t get stuck

Example: (λx. (x (λy. y)) (x 3)) λz. z

I Does not get stuck: Evaluates to 3
I Does not type-check:

I There is no τ1, τ2 such that x : τ1 ` (x (λy. y)) (x 3) : τ2
because you have to pick one type for x

Zach Tatlock CSE 505 Fall 2013, Lecture 10 24

Always restrictive

Whether or not a program “gets stuck” is undecidable:

I If e has no constants or free variables, then e (3 4) or e x
gets stuck if and only if e terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”

I Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk
I Make “false positives” (rejecting safe program) rare enough

I Have compile-time resources for “fancy” type systems

I Make workarounds for false positives convenient enough

Zach Tatlock CSE 505 Fall 2013, Lecture 10 25

How does STLC measure up?

So far, STLC is sound:

I As language dictators, we decided c v and undefined variables
were “bad” meaning neither values nor reducible

I Our type system is a conservative checker that an expression
will never get stuck

But STLC is far too restrictive:

I In practice, just too often that it prevents safe and natural
code reuse

I More fundamentally, it’s not even Turing-complete
I Turns out all (well-typed) programs terminate
I A good-to-know and useful property, but inappropriate for a

general-purpose PL
I That’s okay: We will add more constructs and typing rules

Zach Tatlock CSE 505 Fall 2013, Lecture 10 26

Type Soundness

We will take a syntactic (operational) approach to
soundness/safety

I The popular way since the early 1990s

Theorem (Type Safety): If · ` e : τ then e diverges or e→n v
for an n and v such that · ` v : τ

I That is, if · ` e : τ , then e cannot get stuck

Proof: Next lecture

Zach Tatlock CSE 505 Fall 2013, Lecture 10 27

