Review

CSE 505: Programming Languages

Lecture 13 — Safely Extending STLC: Sums, Products, Bools

> Zach Tatlock Fall 2013

$$\frac{e_1 \to e_1'}{(\lambda x. e) \ v \to e[v/x]} \qquad \frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2} \qquad \frac{e_2 \to e_2'}{v \ e_2 \to v \ e_2'}$$

 $e[e^\prime/x]$: capture-avoiding substitution of e^\prime for free x in e

$$\begin{array}{ll} \hline \Gamma \vdash c: \mathsf{int} & \hline \hline \Gamma \vdash x: \Gamma(x) & \hline \Gamma \vdash x: \tau_1 \vdash e: \tau_2 \\ \hline \Gamma \vdash \lambda x. \; e: \tau_1 \to \tau_2 \end{array} \\ \\ \hline \\ \frac{\Gamma \vdash e_1: \tau_2 \to \tau_1 \quad \Gamma \vdash e_2: \tau_2}{\Gamma \vdash e_1 \; e_2: \tau_1} \end{array}$$

Preservation: If $\cdot \vdash e : \tau$ and $e \to e'$, then $\cdot \vdash e' : \tau$. Progress: If $\cdot \vdash e : \tau$, then e is a value or $\exists e'$ such that $e \to e'$.

CSE 505 Fall 2013, Lecture 13

Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a *principled methodology* thanks to a *proper education*

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Pairs (CBV, left-right)

Zach Tatlock

$$\begin{array}{cccc} e & ::= & \dots \mid (e, e) \mid e.1 \mid e.2 \\ v & ::= & \dots \mid (v, v) \\ \tau & ::= & \dots \mid \tau * \tau \end{array}$$

$$\begin{array}{cccc} e_1 \to e_1' & & \\ \hline \hline (e_1, e_2) \to (e_1', e_2) & & \hline \hline (v_1, e_2) \to (v_1, e_2') \end{array}$$

$$\begin{array}{cccc} e \to e' \\ \hline \hline e.1 \to e'.1 & & \hline \hline e.2 \to e'.2 \\ \hline \hline \hline (v_1, v_2).1 \to v_1 & & \hline \hline (v_1, v_2).2 \to v_2 \end{array}$$

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)

Pairs continued

$\Gamma \vdash e_1: \tau_1$	$\Gamma dash e_2: au_2$
$\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2$	
$rac{\Gammadash e: au_1* au_2}{\Gammadash e.1: au_1}$	$\frac{\Gamma \vdash e: \tau_1 \ast \tau_2}{\Gamma \vdash e.2: \tau_2}$

Canonical Forms: If $\cdot \vdash v: au_1 * au_2$, then v has the form (v_1, v_2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result *directly*

Records

Records Records are like *n*-ary tuples except with *named fields* Field names are *not* variables; they do *not* α -convert $e ::= \dots | \{l_1 = e_1; \dots; l_n = e_n\} | e.l$ $v ::= \dots | \{l_1 = v_1; \dots; l_n = v_n\}$ $\tau ::= \dots | \{l_1 : \tau_1; \dots; l_n : \tau_n\}$ $e_i \rightarrow e'_i$ $e_i \rightarrow e'_i$ $e_i \rightarrow e'_i$ $e_{l_1=v_1,\dots,l_{i-1}=v_{i-1}, l_i=e'_i,\dots,l_n=e_n\}$ $\frac{1 \le i \le n}{\{l_1 = v_1,\dots,l_n = v_n\}.l_i \rightarrow v_i}$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \dots \quad \Gamma \vdash e_n : \tau_n \quad \text{labels distinct}}{\Gamma \vdash \{l_1 = e_1, \dots, l_n = e_n\} : \{l_1 : \tau_1, \dots, l_n : \tau_n\}}$$

$$\frac{\Gamma \vdash e : \{l_1 : \tau_1, \dots, l_n : \tau_n\} \qquad 1 \le i \le n}{\Gamma \vdash e.l_i : \tau_i}$$

Zach Tatlock CSE 505 Fall 2013, Lecture 13 5 Zach Tatlock CSE 505 Fall 2013, Lecture 13

Records continued

Should we be allowed to reorder fields?

- ▶ · \vdash { $l_1 = 42; l_2 = \text{true}$ } : { $l_2 : \text{bool}; l_1 : \text{int}$ }??
- Really a question about, "when are two types equal?"

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

▶ Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Sums

What about ML-style datatypes:

type t = A | B of int | C of int * t

- 1. Tagged variants (i.e., discriminated unions)
- 2. Recursive types
- 3. Type constructors (e.g., type 'a mylist = ...)
- 4. Named types

For now, just model (1) with (anonymous) sum types

 (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss informally

Sums syntax and overview

- $e ::= \dots | A(e) | B(e) | match e with Ax. e | Bx. e$ $v ::= \dots | A(v) | B(v)$ $\tau ::= \dots | \tau_1 + \tau_2$
- Only two constructors: A and B
- All values of any sum type built from these constructors
- So A(e) can have any sum type allowed by e's type
- No need to declare sum types in advance
- Like functions, will "guess the type" in our rules

Sums operational semantics

match A(v) with Ax.
$$e_1 \mid By. e_2 \rightarrow e_1[v/x]$$

$$\overline{\text{match B}(v) \text{ with Ax. } e_1 \mid By. e_2 \rightarrow e_2[v/y]}$$

$$\frac{e \rightarrow e'}{A(e) \rightarrow A(e')} \qquad \frac{e \rightarrow e'}{B(e) \rightarrow B(e')}$$

$$\frac{e \rightarrow e'}{\text{match } e \text{ with Ax. } e_1 \mid By. e_2 \rightarrow \text{match } e' \text{ with Ax. } e_1 \mid By. e_2}$$
match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

CSE 505 Fall 2013, Lecture 13

Zach Tatlock CSE 505 Fall 2013, Lecture 13

Sums Typing Rules

Zach Tatlock

Inference version (not trivial to infer; can require annotations)

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{A}(e) : \tau_1 + \tau_2} \qquad \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{B}(e) : \tau_1 + \tau_2}$$

 $\frac{\Gamma \vdash e: \tau_1 + \tau_2 \qquad \Gamma, x: \tau_1 \vdash e_1: \tau \qquad \Gamma, y: \tau_2 \vdash e_2: \tau}{\Gamma \vdash \mathsf{match} \; e \; \mathsf{with} \; \mathsf{A}x. \; e_1 \mid \mathsf{B}y. \; e_2: \tau}$

Key ideas:

- For constructor-uses, "other side can be anything"
- For **match**, both sides need same type
 - > Don't know which branch will be taken, just like an **if**.
 - In fact, can drop explicit booleans and encode with sums:

E.g., bool = int + int, true = A(0), false = B(0)

What is going on

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of:
 - ► A tag **A** or **B** (or 0 or 1 if you prefer)
 - The (underlying) value
- ► A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Sums Type Safety

Canonical Forms: If $\cdot \vdash v : \tau_1 + \tau_2$, then there exists a v_1 such that either v is $A(v_1)$ and $\cdot \vdash v_1 : \tau_1$ or v is $B(v_1)$ and $\cdot \vdash v_1 : \tau_2$

- Progress for match v with Ax. e₁ | By. e₂ follows, as usual, from Canonical Forms
- Preservation for match v with Ax. e₁ | By. e₂ follows from the type of the underlying value and the Substitution Lemma
- The Substitution Lemma has new "hard" cases because we have new binding occurrences

CSE 505 Fall 2013, Lecture 13

But that's all there is to it (plus lots of induction)

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: "this or that not both"
- You have seen how OCaml does sums (datatypes)
- ▶ Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another

CSE 505 Fall 2013, Lecture 13

Sums in C Sums in Java type t = A of t1 | B of t2 | C of t3type t = A of t1 | B of t2 | C of t3 match e with A x \rightarrow ... match e with A x \rightarrow ... One way in C: One way in Java (t4 is the match-expression's type): abstract class t {abstract t4 m();} struct t { enum $\{A, B, C\}$ class A extends t { t1 x; t4 m(){ \ldots }} tag; class B extends t { t2 x; t4 m(){ \ldots }} union $\{t1 a; t2 b; t3 c;\}$ data; }; class C extends t { t3 x; t4 m(){...}} ... switch(e->tag){ case A: t1 x=e->data.a; e.m() ... ► A new method in t and subclasses for each match expression No static checking that tag is obeyed Supports extensibility via new variants (subclasses) instead of ► As fat as the fattest variant (avoidable with casts) extensibility via new operations (match expressions)

Mutation costs us again!

Zach Tatlock

Zach Tatlock

Zach Tatlock

14

Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- ► Example: replace int + (int → int) with int * (int * (int → int))

Pairs and sums are "logical duals" (more on that later)

- \blacktriangleright To make a $au_1 st au_2$ you need a au_1 and a au_2
- \blacktriangleright To make a $au_1 + au_2$ you need a au_1 or a au_2
- Given a τ₁ * τ₂, you can get a τ₁ or a τ₂ (or both; your "choice")
- Given a τ₁ + τ₂, you must be prepared for either a τ₁ or τ₂ (the value's "choice")

CSE 505 Fall 2013, Lecture 13