Review

CSE 505: Programming Languages

Lecture 13 - Safely Extending STLC: Sums, Products, Bools

Zach Tatlock
Fall 2013

Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a principled methodology thanks to a proper education

- Extend the syntax
- Extend the operational semantics
- Derived forms (syntactic sugar), or
- Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

$$
\begin{aligned}
& e::=\lambda x . e|x| e e|c \quad \tau::=\operatorname{int}| \tau \rightarrow \tau \\
& v::=\lambda x . e|c \quad \Gamma::=\cdot| \Gamma, x: \tau \\
& \overline{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}
\end{aligned}
$$

$e\left[e^{\prime} / x\right]$: capture-avoiding substitution of e^{\prime} for free x in e

$$
\overline{\Gamma \vdash c: \text { int }} \quad \overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}}
$$

$$
\frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}
$$

Preservation: If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\cdot \vdash e^{\prime}: \boldsymbol{\tau}$.
Progress: If $\cdot \vdash e: \tau$, then e is a value or $\exists e^{\prime}$ such that $e \rightarrow e^{\prime}$.

Pairs (CBV, left-right)

$$
\begin{array}{cc}
e & ::=\ldots|(e, e)| e .1 \mid e .2 \\
v & :=\ldots \mid(v, v) \\
\tau & :=\ldots \mid \tau * \tau \\
\frac{e_{1} \rightarrow e_{1}^{\prime}}{\left(e_{1}, e_{2}\right) \rightarrow\left(e_{1}^{\prime}, e_{2}\right)} & \\
\frac{e \rightarrow e^{\prime}}{\left(v_{1}, e_{2}\right) \rightarrow\left(v_{1}, e_{2}^{\prime}\right)} \\
\overline{e .1 \rightarrow e^{\prime} .1} & \frac{e \rightarrow e^{\prime}}{e .2 \rightarrow e^{\prime} .2} \\
\left(v_{1}, v_{2}\right) .1 \rightarrow v_{1} & \overline{\left(v_{1}, v_{2}\right) .2 \rightarrow v_{2}}
\end{array}
$$

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)

Records are like \boldsymbol{n}-ary tuples except with named fields

- Field names are not variables; they do not α-convert

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \ldots \quad \Gamma \vdash e_{n}: \tau_{n} \quad \text { labels distinct }}{\Gamma \vdash\left\{l_{1}=e_{1}, \ldots, l_{n}=e_{n}\right\}:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}}
$$

$$
\frac{\Gamma \vdash e:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\} \quad 1 \leq i \leq n}{\Gamma \vdash e . l_{i}: \tau_{i}}
$$

Records continued

Should we be allowed to reorder fields?
$\bullet \cdot \vdash\left\{l_{1}=42 ; l_{2}=\right.$ true $\}:\left\{l_{2}:\right.$ bool $; l_{1}:$ int $\} ? ?$

- Really a question about, "when are two types equal?"

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

- Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Sums
What about ML-style datatypes:

```
type t = A | B of int | C of int * t
```

1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., type 'a mylist = ...)
4. Named types

For now, just model (1) with (anonymous) sum types

- (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss informally

$$
\begin{aligned}
& e \quad::=\ldots\left|\left\{l_{1}=e_{1} ; \ldots ; l_{n}=e_{n}\right\}\right| e . l \\
& v::=\ldots \mid\left\{l_{1}=v_{1} ; \ldots ; l_{n}=v_{n}\right\} \\
& \tau::=\ldots \mid\left\{l_{1}: \tau_{1} ; \ldots ; l_{n}: \tau_{n}\right\} \\
& \begin{array}{c}
\substack{e_{i} \rightarrow e_{i}^{\prime} \\
\rightarrow\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}, \ldots, l_{n}=e_{n}\right\} \\
\rightarrow\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}^{\prime}, \ldots, l_{n}=e_{n}\right\}}
\end{array} \quad \frac{e \rightarrow e^{\prime}}{e . l \rightarrow e^{\prime} . l} \\
& \begin{array}{c}
1 \leq i \leq n \\
\left\{l_{1}=v_{1}, \ldots, l_{n}=v_{n}\right\} \cdot l_{i} \rightarrow v_{i}
\end{array}
\end{aligned}
$$

$e::=\ldots|\mathrm{A}(e)| \mathrm{B}(e) \mid$ match e with $\mathrm{A} x . e \mid \mathrm{B} x . e$
$v::=\ldots|\mathbf{A}(v)| \mathbf{B}(v)$
$\tau::=\ldots \mid \tau_{1}+\tau_{2}$

- Only two constructors: A and B
- All values of any sum type built from these constructors
- So $\mathbf{A}(e)$ can have any sum type allowed by e 's type
- No need to declare sum types in advance
- Like functions, will "guess the type" in our rules

Sums Typing Rules
Inference version (not trivial to infer; can require annotations)

$$
\begin{gathered}
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \mathrm{~A}(e): \tau_{1}+\tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{~B}(e): \tau_{1}+\tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{1}: \tau \quad \Gamma, y: \tau_{2} \vdash e_{2}: \tau}{\Gamma \vdash \text { match } e \text { with Ax. } e_{1} \mid \mathrm{B} y . e_{2}: \tau}
\end{gathered}
$$

Key ideas:

- For constructor-uses, "other side can be anything"
- For match, both sides need same type
- Don't know which branch will be taken, just like an if.
- In fact, can drop explicit booleans and encode with sums:
E.g., bool $=$ int + int, true $=A(0)$, false $=B(0)$

Sums Type Safety

Canonical Forms: If $\cdot \vdash \boldsymbol{v}: \boldsymbol{\tau}_{1}+\boldsymbol{\tau}_{\mathbf{2}}$, then there exists a $\boldsymbol{v}_{\mathbf{1}}$ such that either \boldsymbol{v} is $\mathbf{A}\left(\boldsymbol{v}_{1}\right)$ and $\cdot \vdash \boldsymbol{v}_{\mathbf{1}}: \boldsymbol{\tau}_{\mathbf{1}}$ or \boldsymbol{v} is $\mathbf{B}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and
$\cdot \vdash v_{1}: \tau_{2}$

- Progress for match v with $\mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2}$ follows, as usual, from Canonical Forms
- Preservation for match v with $\mathbf{A} x . e_{1} \mid \mathrm{B} y . e_{2}$ follows from the type of the underlying value and the Substitution Lemma
- The Substitution Lemma has new "hard" cases because we have new binding occurrences
- But that's all there is to it (plus lots of induction)

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: "this or that not both"
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
- A primitive in one language is an idiom in another

Sums in C

```
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...
```

One way in C:

```
struct t {
    enum {A, B, C} tag;
    union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...
```

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
- Mutation costs us again!

Sums in Java

```
type t = A of t1 | B of t2 | C of t3
```

match e with A x -> ...

One way in Java (t 4 is the match-expression's type):

```
abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...
```

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)

Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace int $+(\mathbf{i n t} \rightarrow \mathbf{i n t})$ with int $*($ int $*($ int \rightarrow int $))$

Pairs and sums are "logical duals" (more on that later)

- To make a $\tau_{1} * \tau_{2}$ you need a τ_{1} and a τ_{2}
- To make a $\tau_{1}+\tau_{2}$ you need a τ_{1} or a τ_{2}
- Given a $\tau_{1} * \tau_{2}$, you can get a τ_{1} or a τ_{2} (or both; your "choice")
- Given a $\tau_{1}+\tau_{2}$, you must be prepared for either a τ_{1} or τ_{2} (the value's "choice")

