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Review

e ::= λx. e | x | e e | c
v ::= λx. e | c

τ ::= int | τ → τ
Γ ::= · | Γ, x : τ

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e[e′/x]: capture-avoiding substitution of e′ for free x in e

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Preservation: If · ` e : τ and e→ e′, then · ` e′ : τ .
Progress: If · ` e : τ , then e is a value or ∃ e′ such that e→ e′.
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Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

I Extend the syntax

I Extend the operational semantics
I Derived forms (syntactic sugar), or
I Direct semantics

I Extend the type system

I Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
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Pairs (CBV, left-right)

e ::= . . . | (e, e) | e.1 | e.2
v ::= . . . | (v, v)
τ ::= . . . | τ ∗ τ

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v1, e2)→ (v1, e

′
2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

(v1, v2).1→ v1 (v1, v2).2→ v2

Small-step can be a pain

I Large-step needs only 3 rules

I Will learn more concise notation later (evaluation contexts)
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Pairs continued

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

Canonical Forms: If · ` v : τ1 ∗ τ2, then v has the form (v1, v2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result
directly
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Records

Records are like n-ary tuples except with named fields
I Field names are not variables; they do not α-convert

e ::= . . . | {l1 = e1; . . . ; ln = en} | e.l
v ::= . . . | {l1 = v1; . . . ; ln = vn}
τ ::= . . . | {l1 : τ1; . . . ; ln : τn}

ei → e′i
{l1=v1, . . . , li−1=vi−1, li=ei, . . . , ln=en}
→ {l1=v1, . . . , li−1=vi−1, li=e

′
i, . . . , ln=en}

e→ e′

e.l→ e′.l

1 ≤ i ≤ n
{l1 = v1, . . . , ln = vn}.li → vi

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n
Γ ` e.li : τi
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Records continued

Should we be allowed to reorder fields?

I · ` {l1 = 42; l2 = true} : {l2 : bool; l1 : int} ??

I Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many
languages disallow it

I Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping
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Sums

What about ML-style datatypes:

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type ’a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types
I (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss

informally
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Sums syntax and overview

e ::= . . . | A(e) | B(e) | match e with Ax. e | Bx. e
v ::= . . . | A(v) | B(v)
τ ::= . . . | τ1 + τ2

I Only two constructors: A and B

I All values of any sum type built from these constructors

I So A(e) can have any sum type allowed by e’s type

I No need to declare sum types in advance

I Like functions, will “guess the type” in our rules
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Sums operational semantics

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ax. e1 | By. e2 → e2[v/y]

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)
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What is going on

Feel free to think about tagged values in your head:

I A tagged value is a pair of:
I A tag A or B (or 0 or 1 if you prefer)
I The (underlying) value

I A match:
I Checks the tag
I Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2
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Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Key ideas:

I For constructor-uses, “other side can be anything”
I For match, both sides need same type

I Don’t know which branch will be taken, just like an if.
I In fact, can drop explicit booleans and encode with sums:

E.g., bool = int + int, true = A(0), false = B(0)
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Sums Type Safety

Canonical Forms: If · ` v : τ1 + τ2, then there exists a v1 such
that either v is A(v1) and · ` v1 : τ1 or v is B(v1) and
· ` v1 : τ2

I Progress for match v with Ax. e1 | By. e2 follows, as usual,
from Canonical Forms

I Preservation for match v with Ax. e1 | By. e2 follows from
the type of the underlying value and the Substitution Lemma

I The Substitution Lemma has new “hard” cases because we
have new binding occurrences

I But that’s all there is to it (plus lots of induction)
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What are sums for?

I Pairs, structs, records, aggregates are fundamental
data-builders

I Sums are just as fundamental: “this or that not both”

I You have seen how OCaml does sums (datatypes)

I Worth showing how C and Java do the same thing
I A primitive in one language is an idiom in another
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Sums in C

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in C:

struct t {

enum {A, B, C} tag;

union {t1 a; t2 b; t3 c;} data;

};

... switch(e->tag){ case A: t1 x=e->data.a; ...

I No static checking that tag is obeyed
I As fat as the fattest variant (avoidable with casts)

I Mutation costs us again!
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Sums in Java

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}

class A extends t { t1 x; t4 m(){...}}

class B extends t { t2 x; t4 m(){...}}

class C extends t { t3 x; t4 m(){...}}

... e.m() ...

I A new method in t and subclasses for each match expression

I Supports extensibility via new variants (subclasses) instead of
extensibility via new operations (match expressions)
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Pairs vs. Sums

You need both in your language

I With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

I Example: replace int + (int→ int) with
int ∗ (int ∗ (int→ int))

Pairs and sums are “logical duals” (more on that later)

I To make a τ1 ∗ τ2 you need a τ1 and a τ2
I To make a τ1 + τ2 you need a τ1 or a τ2
I Given a τ1 ∗ τ2, you can get a τ1 or a τ2 (or both; your

“choice”)

I Given a τ1 + τ2, you must be prepared for either a τ1 or τ2
(the value’s “choice”)
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