CSE 505: Programming Languages Lecture 13 — Safely Extending STLC: Sums, Products, Bools

> Zach Tatlock Fall 2013

$$\begin{array}{rcl} e & ::= & \lambda x. \ e \mid x \mid e \ e \mid c & \tau & ::= & \operatorname{int} \mid \tau \to \tau \\ v & ::= & \lambda x. \ e \mid c & \Gamma & ::= & \cdot \mid \Gamma, x: \tau \end{array}$$

$$\begin{array}{rcl} \hline & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \hline & & \\ \hline & & \\ \hline & & \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \\ \hline \hline & & \hline$$

Preservation: If $\cdot \vdash e : \tau$ and $e \to e'$, then $\cdot \vdash e' : \tau$. Progress: If $\cdot \vdash e : \tau$, then e is a value or $\exists e'$ such that $e \to e'$.

Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a *principled methodology* thanks to a *proper* education

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Pairs (CBV, left-right)

$$\begin{array}{cccc} e & ::= & \dots \mid (e,e) \mid e.1 \mid e.2 \\ v & ::= & \dots \mid (v,v) \\ \tau & ::= & \dots \mid \tau * \tau \end{array}$$

$$\begin{array}{cccc} e_1 \to e_1' & & \\ \hline (e_1,e_2) \to (e_1',e_2) & & \hline (v_1,e_2) \to (v_1,e_2') \end{array}$$

$$\begin{array}{cccc} e \to e' \\ \hline e.1 \to e'.1 & & \hline e.2 \to e'.2 \\ \hline \hline (v_1,v_2).1 \to v_1 & & \hline (v_1,v_2).2 \to v_2 \end{array}$$

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)

Pairs continued

$$\begin{split} \frac{\Gamma \vdash e_1:\tau_1 \quad \Gamma \vdash e_2:\tau_2}{\Gamma \vdash (e_1,e_2):\tau_1*\tau_2} \\ \\ \frac{\Gamma \vdash e:\tau_1*\tau_2}{\Gamma \vdash e.1:\tau_1} \quad \frac{\Gamma \vdash e:\tau_1*\tau_2}{\Gamma \vdash e.2:\tau_2} \end{split}$$

Canonical Forms: If $\cdot \vdash v : \tau_1 * \tau_2$, then v has the form (v_1, v_2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result *directly*

Records

Records are like *n*-ary tuples except with *named fields*

Field names are *not* variables; they do *not* α -convert $e ::= \ldots | \{l_1 = e_1; \ldots; l_n = e_n\} | e.l$ $v ::= \ldots | \{l_1 = v_1; \ldots; l_n = v_n\}$ $\tau ::= \ldots | \{l_1 : \tau_1 : \ldots : l_n : \tau_n\}$ $e \rightarrow e'$ $e_i \rightarrow e'_i$ $\{l_1 = v_1, \dots, l_{i-1} = v_{i-1}, l_i = e_i, \dots, l_n = e_n\} \qquad \overline{e.l \to e'.l}$ $\rightarrow \{l_1 = v_1, \dots, l_{i-1} = v_{i-1}, l_i = e'_i, \dots, l_n = e_n\}$ $1 \le i \le n$ $\{l_1 = v_1, \ldots, l_n = v_n\}.l_i \rightarrow v_i$ $\Gamma \vdash e_1 : \tau_1 \quad \ldots \quad \Gamma \vdash e_n : \tau_n$ labels distinct $\Gamma \vdash \{l_1 = e_1, \dots, l_n = e_n\} : \{l_1 : \tau_1, \dots, l_n : \tau_n\}$ $\Gamma \vdash e : \{l_1 : \tau_1, \dots, l_n : \tau_n\} \qquad 1 < i < n$ $\Gamma \vdash e.l_i : \tau_i$

Records continued

Should we be allowed to reorder fields?

- ▶ · ⊢ $\{l_1 = 42; l_2 = true\} : \{l_2 : bool; l_1 : int\}$??
- Really a question about, "when are two types equal?"

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

► Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Sums

What about ML-style datatypes:

```
type t = A | B of int | C of int * t
```

- 1. Tagged variants (i.e., discriminated unions)
- 2. Recursive types
- 3. Type constructors (e.g., type 'a mylist = ...)
- 4. Named types

For now, just model (1) with (anonymous) sum types

► (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss informally

Sums syntax and overview

$$e ::= \dots | \mathbf{A}(e) | \mathbf{B}(e) | \text{ match } e \text{ with } \mathbf{A}x. e | \mathbf{B}x. e$$
$$v ::= \dots | \mathbf{A}(v) | \mathbf{B}(v)$$
$$\tau ::= \dots | \tau_1 + \tau_2$$

- Only two constructors: A and B
- All values of any sum type built from these constructors
- ▶ So **A**(*e*) can have any sum type allowed by *e*'s type
- No need to declare sum types in advance
- Like functions, will "guess the type" in our rules

Sums operational semantics

match
$$\mathsf{A}(v)$$
 with $\mathsf{A}x.~e_1 \mid \mathsf{B}y.~e_2
ightarrow e_1[v/x]$

match B(v) with Ax. $e_1 \mid By. \ e_2 \rightarrow e_2[v/y]$ $\frac{e \rightarrow e'}{A(e) \rightarrow A(e')} \qquad \frac{e \rightarrow e'}{B(e) \rightarrow B(e')}$

 $e \rightarrow e'$

match e with Ax. $e_1 \mid By. e_2 \rightarrow$ match e' with Ax. $e_1 \mid By. e_2$

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

What is going on

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of:
 - A tag **A** or **B** (or 0 or 1 if you prefer)
 - The (underlying) value
- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

$\Gamma \vdash e : \tau_1$		$\Gamma \vdash e : \tau_2$	
$\Gamma \vdash A(e): au_1$	$1+ au_2$	$\Gamma \vdash B$	$(e): au_1+ au_2$
$\Gamma \vdash e : au_1 + au_2$	$\Gamma, x{:} au_1$	$dash e_1: au$	$\Gamma, y{:} au_2 dash e_2: au$
$\Gamma dash$ match e with A $x.~e_1 \mid$ B $y.~e_2: au$			

Key ideas:

- For constructor-uses, "other side can be anything"
- For match, both sides need same type
 - > Don't know which branch will be taken, just like an if.
 - In fact, can drop explicit booleans and encode with sums: E.g., bool = int + int, true = A(0), false = B(0)

Sums Type Safety

Canonical Forms: If $\cdot \vdash v : \tau_1 + \tau_2$, then there exists a v_1 such that either v is $A(v_1)$ and $\cdot \vdash v_1 : \tau_1$ or v is $B(v_1)$ and $\cdot \vdash v_1 : \tau_2$

- Progress for match v with Ax. e₁ | By. e₂ follows, as usual, from Canonical Forms
- Preservation for match v with Ax. e₁ | By. e₂ follows from the type of the underlying value and the Substitution Lemma
- The Substitution Lemma has new "hard" cases because we have new binding occurrences
- But that's all there is to it (plus lots of induction)

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: "this or that not both"
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another

Sums in C

```
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...
One way in C:
    struct t {
        enum {A, B, C} tag;
        union {t1 a; t2 b; t3 c;} data;
    };
    ... switch(e->tag){ case A: t1 x=e->data.a; ...
```

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
 - Mutation costs us again!

Sums in Java

type t = A of t1 | B of t2 | C of t3 match e with A x \rightarrow ...

One way in Java (t4 is the match-expression's type):

```
abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...
```

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)

Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- ► Example: replace int + (int → int) with int * (int * (int → int))

Pairs and sums are "logical duals" (more on that later)

- To make a $au_1 * au_2$ you need a au_1 and a au_2
- \blacktriangleright To make a $au_1 + au_2$ you need a au_1 or a au_2
- Given a τ₁ * τ₂, you can get a τ₁ or a τ₂ (or both; your "choice")
- Given a τ₁ + τ₂, you must be prepared for either a τ₁ or τ₂ (the value's "choice")