
CSE 505: Programming Languages

Lecture 13 — Safely Extending STLC: Sums,
Products, Bools

Zach Tatlock
Fall 2013

Review

e ::= λx. e | x | e e | c
v ::= λx. e | c

τ ::= int | τ → τ
Γ ::= · | Γ, x : τ

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e[e′/x]: capture-avoiding substitution of e′ for free x in e

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Preservation: If · ` e : τ and e→ e′, then · ` e′ : τ .
Progress: If · ` e : τ , then e is a value or ∃ e′ such that e→ e′.

Zach Tatlock CSE 505 Fall 2013, Lecture 13 2

Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

I Extend the syntax

I Extend the operational semantics
I Derived forms (syntactic sugar), or
I Direct semantics

I Extend the type system

I Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Zach Tatlock CSE 505 Fall 2013, Lecture 13 3

Pairs (CBV, left-right)

e ::= . . . | (e, e) | e.1 | e.2
v ::= . . . | (v, v)
τ ::= . . . | τ ∗ τ

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v1, e2)→ (v1, e

′
2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

(v1, v2).1→ v1 (v1, v2).2→ v2

Small-step can be a pain

I Large-step needs only 3 rules

I Will learn more concise notation later (evaluation contexts)

Zach Tatlock CSE 505 Fall 2013, Lecture 13 4

Pairs continued

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

Canonical Forms: If · ` v : τ1 ∗ τ2, then v has the form (v1, v2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result
directly

Zach Tatlock CSE 505 Fall 2013, Lecture 13 5

Records

Records are like n-ary tuples except with named fields
I Field names are not variables; they do not α-convert

e ::= . . . | {l1 = e1; . . . ; ln = en} | e.l
v ::= . . . | {l1 = v1; . . . ; ln = vn}
τ ::= . . . | {l1 : τ1; . . . ; ln : τn}

ei → e′i
{l1=v1, . . . , li−1=vi−1, li=ei, . . . , ln=en}
→ {l1=v1, . . . , li−1=vi−1, li=e

′
i, . . . , ln=en}

e→ e′

e.l→ e′.l

1 ≤ i ≤ n
{l1 = v1, . . . , ln = vn}.li → vi

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n
Γ ` e.li : τi

Zach Tatlock CSE 505 Fall 2013, Lecture 13 6

Records continued

Should we be allowed to reorder fields?

I · ` {l1 = 42; l2 = true} : {l2 : bool; l1 : int} ??

I Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many
languages disallow it

I Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Zach Tatlock CSE 505 Fall 2013, Lecture 13 7

Sums

What about ML-style datatypes:

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type ’a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types
I (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss

informally

Zach Tatlock CSE 505 Fall 2013, Lecture 13 8

Sums syntax and overview

e ::= . . . | A(e) | B(e) | match e with Ax. e | Bx. e
v ::= . . . | A(v) | B(v)
τ ::= . . . | τ1 + τ2

I Only two constructors: A and B

I All values of any sum type built from these constructors

I So A(e) can have any sum type allowed by e’s type

I No need to declare sum types in advance

I Like functions, will “guess the type” in our rules

Zach Tatlock CSE 505 Fall 2013, Lecture 13 9

Sums operational semantics

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ax. e1 | By. e2 → e2[v/y]

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

Zach Tatlock CSE 505 Fall 2013, Lecture 13 10

What is going on

Feel free to think about tagged values in your head:

I A tagged value is a pair of:
I A tag A or B (or 0 or 1 if you prefer)
I The (underlying) value

I A match:
I Checks the tag
I Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Zach Tatlock CSE 505 Fall 2013, Lecture 13 11

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Key ideas:

I For constructor-uses, “other side can be anything”
I For match, both sides need same type

I Don’t know which branch will be taken, just like an if.
I In fact, can drop explicit booleans and encode with sums:

E.g., bool = int + int, true = A(0), false = B(0)

Zach Tatlock CSE 505 Fall 2013, Lecture 13 12

Sums Type Safety

Canonical Forms: If · ` v : τ1 + τ2, then there exists a v1 such
that either v is A(v1) and · ` v1 : τ1 or v is B(v1) and
· ` v1 : τ2

I Progress for match v with Ax. e1 | By. e2 follows, as usual,
from Canonical Forms

I Preservation for match v with Ax. e1 | By. e2 follows from
the type of the underlying value and the Substitution Lemma

I The Substitution Lemma has new “hard” cases because we
have new binding occurrences

I But that’s all there is to it (plus lots of induction)

Zach Tatlock CSE 505 Fall 2013, Lecture 13 13

What are sums for?

I Pairs, structs, records, aggregates are fundamental
data-builders

I Sums are just as fundamental: “this or that not both”

I You have seen how OCaml does sums (datatypes)

I Worth showing how C and Java do the same thing
I A primitive in one language is an idiom in another

Zach Tatlock CSE 505 Fall 2013, Lecture 13 14

Sums in C

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in C:

struct t {

enum {A, B, C} tag;

union {t1 a; t2 b; t3 c;} data;

};

... switch(e->tag){ case A: t1 x=e->data.a; ...

I No static checking that tag is obeyed
I As fat as the fattest variant (avoidable with casts)

I Mutation costs us again!

Zach Tatlock CSE 505 Fall 2013, Lecture 13 15

Sums in Java

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}

class A extends t { t1 x; t4 m(){...}}

class B extends t { t2 x; t4 m(){...}}

class C extends t { t3 x; t4 m(){...}}

... e.m() ...

I A new method in t and subclasses for each match expression

I Supports extensibility via new variants (subclasses) instead of
extensibility via new operations (match expressions)

Zach Tatlock CSE 505 Fall 2013, Lecture 13 16

Pairs vs. Sums

You need both in your language

I With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

I Example: replace int + (int→ int) with
int ∗ (int ∗ (int→ int))

Pairs and sums are “logical duals” (more on that later)

I To make a τ1 ∗ τ2 you need a τ1 and a τ2
I To make a τ1 + τ2 you need a τ1 or a τ2
I Given a τ1 ∗ τ2, you can get a τ1 or a τ2 (or both; your

“choice”)

I Given a τ1 + τ2, you must be prepared for either a τ1 or τ2
(the value’s “choice”)

Zach Tatlock CSE 505 Fall 2013, Lecture 13 17

