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Review

e ::= λx. e | x | e e | c
v ::= λx. e | c

τ ::= int | τ → τ
Γ ::= · | Γ, x : τ

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e[e′/x]: capture-avoiding substitution of e′ for free x in e

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Preservation: If · ` e : τ and e→ e′, then · ` e′ : τ .
Progress: If · ` e : τ , then e is a value or ∃ e′ such that e→ e′.
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Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

I Extend the syntax

I Extend the operational semantics
I Derived forms (syntactic sugar), or
I Direct semantics

I Extend the type system

I Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
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Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types
(b1, . . . , bn) and primitives (p1 : τ1, . . . , pn : τn). Examples:

I concat : string→string→string

I toInt : float→int

I “hello” : string

For each primitive, assume if applied to values of the right types it
produces a value of the right type

Together the types and assumed steps tell us how to type-check
and evaluate pi v1 . . . vn where pi is a primitive

We can prove soundness once and for all given the assumptions
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Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our
lambda-calculus encoding won’t type-check, nor will any encoding
of equal expressive power

I So instead add an explicit construct for recursion

I You might be thinking let rec f x = e, but we will do
something more concise and general but less intuitive

e ::= . . . | fix e

e→ e′

fix e→ fix e′ fix λx. e→ e[fix λx. e/x]

No new values and no new types
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Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

I Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1)))) 5
→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 5
→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(5− 1))
→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n− 1))))(n− 1)))) 4)

→
...
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Why called fix?

In math, a fix-point of a function g is an x such that g(x) = x

I This makes sense only if g has type τ → τ for some τ

I A particular g could have have 0, 1, 39, or infinity fix-points

I Examples for functions of type int→ int:

I λx. x+ 1 has no fix-points

I λx. x ∗ 0 has one fix-point

I λx. absolute value(x) has an infinite number of fix-points

I λx. if (x < 10 && x > 0) x 0 has 10 fix-points
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Higher types

At higher types like (int→ int)→ (int→ int), the notion of
fix-point is exactly the same (but harder to think about)

I For what inputs f of type int→ int is g(f) = f

Examples:

I λf. λx. (f x) + 1 has no fix-points

I λf. λx. (f x) ∗ 0 (or just λf. λx. 0) has 1 fix-point
I The function that always returns 0
I In math, there is exactly one such function (cf. equivalence)

I λf. λx. absolute value(f x) has an infinite number of
fix-points: Any function that never returns a negative result
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Back to factorial

Now, what are the fix-points of
λf. λx. if (x < 1) 1 (x ∗ (f(x− 1)))?

It turns out there is exactly one (in math): the factorial function!

And fix λf. λx. if (x < 1) 1 (x ∗ (f(x− 1))) behaves just
like the factorial function

I That is, it behaves just like the fix-point of
λf. λx. if (x < 1) 1 (x ∗ (f(x− 1)))

I In general, fix takes a function-taking-function and returns its
fix-point

(This isn’t necessarily important, but it explains the terminology
and shows that programming is deeply connected to mathematics)
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Typing fix

Γ ` e : τ → τ

Γ ` fix e : τ

Math explanation: If e is a function from τ to τ , then fix e, the
fixed-point of e, is some τ with the fixed-point property

I So it’s something with type τ

Operational explanation: fix λx. e′ becomes e′[fix λx. e′/x]

I The substitution means x and fix λx. e′ need the same type

I The result means e′ and fix λx. e′ need the same type

Note: The τ in the typing rule is usually insantiated with a
function type

I e.g., τ1 → τ2, so e has type (τ1 → τ2)→ (τ1 → τ2)

Note: Proving soundness is straightforward!
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General approach

We added let, booleans, pairs, records, sums, and fix

I let was syntactic sugar

I fix made us Turing-complete by “baking in” self-application

I The others added types

Whenever we add a new form of type τ there are:

I Introduction forms (ways to make values of type τ )

I Elimination forms (ways to use values of type τ )

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim
forms”?
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Anonymity

We added many forms of types, all unnamed a.k.a. structural.
Many real PLs have (all or mostly) named types:

I Java, C, C++: all record types (or similar) have names
I Omitting them just means compiler makes up a name

I OCaml sum types and record types have names

A never-ending debate:

I Structual types allow more code reuse: good

I Named types allow less code reuse: good

I Structural types allow generic type-based code: good

I Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types
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Termination

Surprising fact: If · ` e : τ in STLC with all our additions except
fix, then there exists a v such that e→∗ v

I That is, all programs terminate

So termination is trivially decidable (the constant “yes” function),
so our language is not Turing-complete

The proof requires more advanced techniques than we have learned
so far because the size of expressions and typing derivations does
not decrease with each program step

I Could present it in about an hour if desired

Non-proof:

I Recursion in λ calculus requires some sort of self-application

I Easy fact: For all Γ, x, and τ , we cannot derive Γ ` x x : τ
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