
CSE 505: Programming Languages

Lecture 17 — Subtyping

Zach Tatlock
Fall 2013

Tradeoffs

Desirable type system properties (desiderata):

I soundness - exclude all programs that get stuck

I completeness - include all programs that don’t get stuck

I decidability - effectively determine if a program has a type

Our friend Turing says we can’t have it all.

We choose soundness and decidability, aim for “reasonable”
completeness, but still reject valid programs.

Any benefit to an unsound, complete, decidable type system?

Today: subtype polymorphism to start adding completeness.

Next Lecture: parametric polymorphism to get even more.

Zach Tatlock CSE 505 Fall 2013, Lecture 17 2

Where shall we add completeness?

if true 1 (2, 3) does not get stuck, but we can’t type it either.

Perhaps we should add this typing rule?

e1
∗−→ true Γ ` e2 : τ

Γ ` if e1 e2 e3 : τ

Not if we want to keep decidability!

How about?
Γ ` e2 : τ

Γ ` if true e2 e3 : τ

Sound, adds completeness, but not terribly useful.

Zach Tatlock CSE 505 Fall 2013, Lecture 17 3

Where shall we add useful completeness?

Code reuse is crucial: write code once, use it in many contexts.

Polymorphism supports code reuse and comes in several flavors:

I ad hoc - implementation depends on type details
+ in ML vs. C vs. C++

I parametric - implementation independent of type details
Γ ` λx. x : ∀α.α→ α

I subtype - implementation assumes constrained types
void makeSound(Dog d) {

....d.growl();

}

...

makeSound(new Husky());

Subtyping uses a value of type τ as a different type τ ′.
Zach Tatlock CSE 505 Fall 2013, Lecture 17 4

Where shall we add useful completeness?

Code reuse is crucial: write code once, use it in many contexts.

Polymorphism supports code reuse and comes in several flavors:

I ad hoc - implementation depends on type details
+ in ML vs. C vs. C++

I parametric - implementation independent of type details
Γ ` λx. x : ∀α→ α

I subtype - implementation assumes constrained types
void makeSound(Dog d) {

....d.growl();

}

...

makeSound(new Husky());

Subtyping uses a value of type A as a different type B.
Zach Tatlock CSE 505 Fall 2013, Lecture 17 5

Where shall we add useful completeness? Subtyping.

Wait... how many types can a STLC expression have?

At most one! Currently we have no polymorphism :(
If Γ ` e : τ1 and Γ ` e : τ2, then τ1 = τ2

Let’s fix that:

I add completeness by extending STLC with subtyping

I consider implications for the compiler

I also touch on coercions and downcasts

Guiding principle:

If A is a subtype of B (written A ≤ B), then we can safely

use a value of type A anywhere a value of type B is expected.

Zach Tatlock CSE 505 Fall 2013, Lecture 17 6

Extending STLC with Subtyping

We know the extension recipe:

1. add new syntax

2. add new semantic rules

3. add new typing rules

4. update type safety proof

Zach Tatlock CSE 505 Fall 2013, Lecture 17 7

Extending STLC with Subtyping

We know the extension recipe: already half done!

1. add new syntax

2. add new semantic rules

3. add new typing rules

4. update type safety proof

Where to start adding new typing rules?

First, let’s focus on records:

I review existing rules

I consider examples of incompleteness

I add new rules to handle examples and improve completeness

Zach Tatlock CSE 505 Fall 2013, Lecture 17 8

Records Review

e ::= . . . | {l1 = e1, . . . , ln = en} | e.l
τ ::= . . . | {l1 : τ1, . . . , ln : τn}
v ::= . . . | {l1 = v1, . . . , ln = vn}

{l1 = v1, . . . , ln = vn}.li → vi

ei → e′i
{l1=v1, . . . , li−1=vi−1, li=ei, . . . , ln=en}
→ {l1=v1, . . . , li−1=vi−1, li=e

′
i, . . . , ln=en}

e→ e′

e.l→ e.l

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n
Γ ` e.li : τi

Zach Tatlock CSE 505 Fall 2013, Lecture 17 9

Should this typecheck?

(λx : {l1:int, l2:int}. x.l1 + x.l2) {l1=3, l2=4, l3=5}

Sure! It won’t get stuck.

Suggests width subtyping:

τ1 ≤ τ2

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

Add new typing rule to take advantage of subtyping: Subsumption

subsumption
Γ ` e : τ ′ τ ′ ≤ τ

Γ ` e : τ

Zach Tatlock CSE 505 Fall 2013, Lecture 17 10

Now it type-checks

.

.

.

·, x : {l1:int, l2:int} ` x.l1 + x.l2 : int

· ` λx : {l1:int, l2:int}. x.l1 + x.l2 : {l1:int, l2:int} → int

· ` 3 : int · ` 4 : int · ` 5 : int

· ` {l1=3, l2=4, l3=5} : {l1:int, l2:int, l3:int}
{l1:int, l2:int, l3:int} ≤ {l1:int, l2:int}

· ` {l1=3, l2=4, l3=5} : {l1:int, l2:int}
· ` (λx : {l1:int, l2:int}. x.l1 + x.l2){l1=3, l2=4, l3=5} : int

Instantiation of Subsumption is highlighted (pardon formatting)

The derivation of the subtyping fact

{l1:int, l2:int, l3:int} ≤ {l1:int, l2:int}
would continue, using rules for the τ1 ≤ τ2. So far we only have

one subtyping axiom, just use that.

Clean division of responsibility:
I Where to use subsumption
I How to show two types are subtypes

Zach Tatlock CSE 505 Fall 2013, Lecture 17 11

Permutation

Does this program type-check? Does it get stuck?

(λx:{l1:int, l2:int}. x.l1 + x.l2){l2=3; l1=4}

Suggests permutation subtyping:

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

Example with width and permutation. Show:
· ` {l1=7, l2=8, l3=9} : {l2:int, l1:int}

No longer obvious, efficient, sound, complete type-checking algo:

I sometimes such algorithms exist and sometimes they don’t

I in this case, we have them

Zach Tatlock CSE 505 Fall 2013, Lecture 17 12

Reflexive Transitive Closure

The subtyping principle implies reflexivity and transtivity:

τ ≤ τ
τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
Could get transitivity w/ multiple subsumptions anyway.

Have we lost anything while gaining all these rules?

Type-checking no longer syntax-directed:

I may be 0, 1, or many distinct derivations of Γ ` e : τ

I many potential ways to show τ1 ≤ τ2

Still decidable? Need algorithm checking that labels always a subset of
what’s required, must prove it “answers yes” iff there exists a derivation.

Still efficient?

Zach Tatlock CSE 505 Fall 2013, Lecture 17 13

Implementation Efficiency

Given semantics, width and permutation subtyping totally reasonable.

How do they impact the lives of our dear friend, the compiler writer?

It would be nice to compile e.l down to:

1. evaluate e to a record stored at an address a

2. load a into a register r1

3. load field l from a fixed offset (e.g., 4) into r2

Many type systems are engineered to make this easy for compiler writers.

In general:

If some language restriction seems odd, ask yourself: what
useful invariant does limiting expressiveness provide the
compiler?

Zach Tatlock CSE 505 Fall 2013, Lecture 17 14

Implementation Efficiency

Changes to implement width subtyping alone? None.

Changes to implement permutation subtyping alone? Sort fields.

Changes to implement both? Not so easy. . .
f1 : {l1 : int} → int f2 : {l2 : int} → int
x1 = {l1 = 0, l2 = 0} x2 = {l2 = 0, l3 = 0}
f1(x1) f2(x1) f2(x2)

Can use dictionary-passing to look up offset at run-time and
maybe optimize away some lookups.

Zach Tatlock CSE 505 Fall 2013, Lecture 17 15

Getting some sweet completeness.

Added new subtyping judgement:
I width, permutation, reflexive transitive closure

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn} τ ≤ τ

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3

Added new typing rule, subsumption, to use subtyping:

Γ ` e : τ ′ τ ′ ≤ τ
Γ ` e : τ

Squeeze out more completeness:
I Extend subtyping to “parts” of larger types
I Example: Can’t yet use subsumption on a record field’s type
I Example: Don’t yet have supertypes of τ1 → τ2

Zach Tatlock CSE 505 Fall 2013, Lecture 17 16

Depth

Does this program type-check? Does it get stuck?

(λx:{l1:{l3:int}, l2:int}. x.l1.l3 + x.l2){l1={l3=3, l4=9}, l2=4}

Suggests depth subtyping

τi ≤ τ ′i
{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ

′
i , . . . , ln:τn}

(With permutation subtyping, can just have depth on left-most field)

Zach Tatlock CSE 505 Fall 2013, Lecture 17 17

Function Subtyping

Given our rich subtyping on records (and/or other primitives), how
do we extend it to other types, notably τ1 → τ2?

For example, we’d like int→ {l1:int, l2:int} ≤ int→ {l1:int}
so we can pass a function of the subtype somewhere expecting a
function of the supertype

???

τ1 → τ2 ≤ τ3 → τ4

For a function to have type τ3 → τ4 it must return something of
type τ4 (including subtypes) whenever given something of type τ3
(including subtypes). A function assuming less than τ3 will do, but
not one assuming more. A function guaranteeing more than τ4 but
not one guaranteeing less.

Zach Tatlock CSE 505 Fall 2013, Lecture 17 18

Function Subtyping

τ3 ≤ τ1 τ2 ≤ τ4
τ1 → τ2 ≤ τ3 → τ4

Also want:
τ ≤ τ

Example: λx : {l1:int, l2:int}. {l1 = x.l2, l2 = x.l1}
can have type {l1:int, l2:int, l3:int} → {l1:int}
but not {l1:int} → {l1:int}

Jargon: Function types are contravariant in their argument and
covariant in their result

I Depth subtyping means immutable records are covariant in
their fields

This is unintuitive enough that you, a friend, or a manager, will
some day be convinced that functions can be covariant in their
arguments. THIS IS ALWAYS WRONG (UNSOUND).

Zach Tatlock CSE 505 Fall 2013, Lecture 17 19

Summary of subtyping rules

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3 τ ≤ τ

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

τi ≤ τ ′i
{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ

′
i , . . . , ln:τn}

τ3 ≤ τ1 τ2 ≤ τ4
τ1 → τ2 ≤ τ3 → τ4

Notes:
I As always, elegantly handles arbitrarily large syntax (types)
I For other types, e.g., sums or pairs, would have more rules,

deciding carefully about co/contravariance of each position
Zach Tatlock CSE 505 Fall 2013, Lecture 17 20

Maintaining soundness

Our Preservation and Progress Lemmas still “work” in the
presence of subsumption

I So in theory, any subtyping mistakes would be caught when
trying to prove soundness!

In fact, it seems too easy: induction on typing derivations makes
the subsumption case easy:

I Progress: One new case if typing derivation · ` e : τ ends
with subsumption. Then · ` e : τ ′ via a shorter derivation, so
by induction a value or takes a step.

I Preservation: One new case if typing derivation · ` e : τ ends
with subsumption. Then · ` e : τ ′ via a shorter derivation, so
by induction if e→ e′ then · ` e′ : τ ′. So use subsumption
to derive · ` e′ : τ .

Hmm...

Zach Tatlock CSE 505 Fall 2013, Lecture 17 21

Ah, Canonical Forms

That’s because Canonical Forms is where the action is:

I If · ` v : {l1:τ1, . . . , ln:τn}, then v is a record with fields
l1, . . . , ln

I If · ` v : τ1 → τ2, then v is a function

We need these for the “interesting” cases of Progress

Now have to use induction on the typing derivation (may end with
many subsumptions) and induction on the subtyping derivation
(e.g., “going up the derivation” only adds fields)

I Canonical Forms is typically trivial without subtyping; now it
requires some work

Note: Without subtyping, Preservation is a little “cleaner” via
induction on e→ e′, but with subtyping it’s much cleaner via
induction on the typing derivation

I That’s why we did it that way

Zach Tatlock CSE 505 Fall 2013, Lecture 17 22

A matter of opinion?

If subsumption makes well-typed terms get stuck, it is wrong

We might allow less subsumption (e.g., for efficiency), but we shall
not allow more than is sound

But we have been discussing “subset semantics” in which e : τ
and τ ≤ τ ′ means e is a τ ′

I There are “fewer” values of type τ than of type τ ′, but not
really

Very tempting to go beyond this, but you must be very careful. . .

But first we need to emphasize a really nice property of our current
setup: Types never affect run-time behavior

Zach Tatlock CSE 505 Fall 2013, Lecture 17 23

Erasure

A program type-checks or does not. If it does, it evaluates just like
in the untyped λ-calculus. More formally, we have:

1. Our language with types (e.g., λx : τ . e, Aτ1+τ2(e), etc.)
and a semantics

2. Our language without types (e.g., λx. e, A(e), etc.) and a
different (but very similar) semantics

3. An erasure metafunction from first language to second

4. An equivalence theorem: Erasure commutes with evaluation

This useful (for reasoning and efficiency) fact will be less obvious
(but true) with parametric polymorphism

Zach Tatlock CSE 505 Fall 2013, Lecture 17 24

Coercion Semantics

Wouldn’t it be great if. . .

I int ≤ float

I int ≤ {l1:int}
I τ ≤ string

I we could “overload the cast operator”

For these proposed τ ≤ τ ′ relationships, we need a run-time
action to turn a τ into a τ ′

I Called a coercion

Could use float_of_int and similar but programmers whine
about it

Zach Tatlock CSE 505 Fall 2013, Lecture 17 25

Implementing Coercions

If coercion C (e.g., float_of_int) “witnesses” τ ≤ τ ′ (e.g.,
int ≤ float), then we insert C where τ is subsumed to τ ′

So translation to the untyped language depends on where
subsumption is used. So it’s from typing derivations to programs.

But typing derivations aren’t unique: uh-oh

Example 1:

I Suppose int ≤ float and τ ≤ string

I Consider · ` print string(34) : unit

Example 2:

I Suppose int ≤ {l1:int}
I Consider 34 == 34, where == is equality on ints or pointers

Zach Tatlock CSE 505 Fall 2013, Lecture 17 26

Coherence

Coercions need to be coherent, meaning they don’t have these
problems

More formally, programs are deterministic even though type
checking is not—any typing derivation for e translates to an
equivalent program

Alternately, can make (complicated) rules about where
subsumption occurs and which subtyping rules take precedence

I Hard to understand, remember, implement correctly

It’s a mess. . .

Zach Tatlock CSE 505 Fall 2013, Lecture 17 27

Upcasts and Downcasts

I “Subset” subtyping allows “upcasts”

I “Coercive subtyping” allows casts with run-time effect

I What about “downcasts”?

That is, should we have something like:

if_hastype(τ ,e1) then x. e2 else e3

Roughly, if at run-time e1 has type τ (or a subtype), then bind it
to x and evaluate e2. Else evaluate e3. Avoids having exceptions.

I Not hard to formalize

Zach Tatlock CSE 505 Fall 2013, Lecture 17 28

Downcasts

Can’t deny downcasts exist, but here are some bad things about
them:

I Types don’t erase – you need to represent τ and e1’s type at
run-time. (Hidden data fields)

I Breaks abstractions: Before, passing {l1 = 3, l2 = 4} to a
function taking {l1 : int} hid the l2 field, so you know it
doesn’t change or affect the callee

Some better alternatives:

I Use ML-style datatypes — the programmer decides which
data should have tags

I Use parametric polymorphism — the right way to do
container types (not downcasting results)

Zach Tatlock CSE 505 Fall 2013, Lecture 17 29

