Printed by Zach Tatlock

Oct 06, 15 1:20 LO1_annotated.v Page 1/3 Oct 06, 15 1:20 LO1_annotated.v Page 2/3
(* ** Lecture 01 *) This means that a multi-argument function is actually
a single—argument function that *returns* another function.
(* * "Inductive" introduces a new inductive type. o]
"A : B" means "A has type B". So the type bool has type Set! andb : bool —> bool —> bool
* is actually
I'nducti ve bool : Set = andb : bool —> (bool —> bool) *
| true : bool Check (andb true). (* * bool —> bool *)
| false : bool.
I nductive nat: Set :=
(* * notb is a function that takes a bool and returns its negation. | O : nat
think of "match" like a case or switch statement. | S :nat —> nat.
try removing the "| false => true" line and see what happens.
coq’s pattern—matching is required to be *exhaustive*. (* *isZero checks to see if a natural number is, well, zero.
* " "is used as a variable name to indicate to Coq (and readers!)
Def i ni tion notb (b : bool) : bool := that the argument it names will not be used.
match b with *
| true => false Defi ni ti onisZero (n: nat) : bool :=
| false => true match n with
end. | O =>true
| S _=>false
*x end.
andb returns the conjunction of b1 and b2.
* Lenma isZero_O :
Def i ni ti on andb (bl : bool) (b2 : bool) : bool := isZero O = true.
match bl with Proof.
| true => b2 simpl.
| false => false reflexivity.
end. d.
* * (* * Let’s try to define addition *
Let’s try to *prove* that andb is commutative. Fail Definitionadd(nl:nat)(n2:nat):nat:=
* match nl with
Lemra andb_comm : | O =>n2
forall b1 b2, | S ml=>add ml (S n2)
andb bl b2 = andb b2 b1l. end.
Proof. (* * This fails with something like:
intro x. (* * assume an arbitrary boolean, and call it x *) "The reference add was not found in the current environment."
introy. (* * assume an arbitrary boolean, and callity *) This is because when we use "Definition”, the thing we're defining
destruct x. (* * case analysis on X isn’t available in the body of the definition.
- destruct y. (* * case analysis ony * Let’s try again using "Fixpoint". Fixpoint will be how we define recursive fu
+ reflexivity. (* * the goal is an equals sign with the same thing on both si nctions.
des *) In Coq, recursive functions are guaranteed to terminate,
+ simpl. (* * simplify the goal by running the andb function *) so Coq checks that recursive arguments are *smaller*.
reflexivity. *
- destruct y. Fi xpoi nt add (nl nat) (n2 : nat) : nat :=
+ simpl. reflexivity. match nl with
+ reflexivity. | O =>n2
d. | Sml=>S (add ml n2)
end.
(* * Here is a shorter version of the same proof.
Don't worry about understanding it for now. *) Lemra O_add :
Lemma andb_comm’ : forall n,
forall bl b2, addOn=n.
andb b1 b2 = andb b2 b1. Proof.
Proof. intro n.
destruct b1; destruct b2; auto. simpl.
reflexivity.
d.
(* * "Check <term>" prints the *type* of <term> *)
Check andb. (* *andb : bool => bool —> bool *) Lerma add_O:
forall n,
(* * Someone asked about how "andb" corresponds to this type. addnO=n.
Here's a "desugared" version of andb that should make this clearer. *) Proof.
Def i ni ti on andb’: bool —> bool —> bool := intro n.
fun bl => fun b2 => match bl with simpl. (* * simpl doesn’t do anything. *)
| true => b2 Abort.
| false => false (* * Cog can't simplify "add n O". Let’s try case analysis with "destruct” *)
end. Lemma add_O:
(* * Note that multi—-argument functions in Coq are "curried". forall n,
Thursday October 22, 2015 L01/L01_annotated.v 1/2

Oct 06, 15 1:20 LO1 annotated.v

Page 3/3

addnO=n.
Proof.
intro n.
destruct n.
-* *nisO *) reflexivity.
-(* *nis S n (for some other n) *)
destruct n.
+ simpl. reflexivity.
+ simpl. (* * starting to get worried, here *)
destruct n.
* simpl. reflexivity.
* simpl. (* * Seems like we're going to need a different strategy
Abort.
(* * Let’s try *induction*. *)
Lemma add_O:
forall n,
addnO=n.
Proof.
intro n.
induction n.
- simpl. reflexivity.
- simpl.
rewrite IHn. (* * find the left—hand side of IHn in the goal
and replace it by the right-hand side *)
reflexivity.
d.

(* *in class, Zach first defined add as follows: *)
Fi xpoi nt add’ (nl1: nat) (n2: nat) : nat :=
match nl with
| O =>n2
| S ml=>add ml (S n2)
end.

(* * Optional exercise : complete the following proof.
*

Lemma S_add’_add’_S:
forall x y,
add’ x (Sy) =S (add’ x y).
Proof.

induction x.

- intros. reflexivity.

— intros. simpl. rewrite IHx. reflexivity.
d.

Lemma add_add’ : (* * at some point in the proof, rewrite by S_add’_add’_S
forall x y,
add xy =add’ xy.
Proof.
(* *FILL IN PROOF HERE *)
Admitted.

I nductive list (A: Set): Set =
| nil : list A
| cons : A —>list A —> list A.

(* * We'll do more list stuff next time *)

")

")

Thursday October 22, 2015

L01/L01_annotated.v

Printed by Zach Tatlock

22

