
CSE-505: Programming Languages

Lecture 23 —
Types for OOP;

Static Overloading and Multimethods

Zach Tatlock
2015

So far. . .

Last lecture (among other things):

I The difference between OOP and “records of functions with
shared private state” is dynamic-dispatch (a.k.a. late-binding)
of self

I (Informally) defined method-lookup to implement
dynamic-dispatch correctly: use run-time tags or code-pointers

Now:

I Purpose of static typing for (pure) OOP

I Subtyping and contrasting it with subclassing

I Static overloading

I Multimethods

Zach Tatlock CSE-505 2015, Lecture 23 2

Type-Safety in OOP

Remember the two main goals we had with static type systems:
I Prevent “getting stuck” which is how we encode

language-level errors in our operational semantics
I Without rejecting too many useful programs

I Enforce abstractions so programmers can hide application-level
things and enforce invariants, preconditions, etc.

I Subtyping and parametric polymorphism do this in
complementary ways, assuming no downcasts or other run-time
type tests

Pure OOP has only method calls (and field accesses)

I A method-lookup is stuck if receiver has no method with right
name/arity (no match)

I (If we add overloading,) a method-lookup is stuck if receiver
has no “best” method (no best match)

Zach Tatlock CSE-505 2015, Lecture 23 3

Structural or Nominal

A straightforward structural type system for OOP would be like
our type system with record types and function types

I An object type lists the methods that objects of that type
have, plus the the types of the argument(s) and result(s) for
each method

I Sound subtyping just as we learned
I Width, permutation, and depth for object types
I Contravariant arguments and covariant result for each method

type in an object type

A nominal type system could give named types and explicit
subtyping relationships

I Allow a subset of the subtyping (therefore sound) of the
structural system (see lecture 11 for plusses/minuses)

I Common to reuse class names as type names and require
subclasses to be subtypes...

Zach Tatlock CSE-505 2015, Lecture 23 4



Subclassing is Subtyping

Statically typed OOP languages often purposely “confuse” classes
and types: C is a class and a type and if C extends D then C is a
subtype of D

Therefore, if C overrides m, the type of m in C must be a subtype
of the type of m in D

Just like functions, method subtyping allows contravariant
arguments and covariant results

I If code knows it has a C, it can call methods with “more”
arguments and know there are “fewer” results

Zach Tatlock CSE-505 2015, Lecture 23 5

Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking self as
an argument

But unlike other arguments, self is covariant!!

I Else overriding method couldn’t access new fields/methods

I Sound because self must be passed, not another value with
the supertype

This is the key reason encoding OOP in a typed λ-calculus
requires ingenuity, fancy types, and/or run-time cost

Zach Tatlock CSE-505 2015, Lecture 23 6

More subtyping

With single-inheritance and the class/type confusion, we don’t get
all the subtyping we want

I Example: Taking any object that has an m method from int

to int

Interfaces help somewhat, but class declarations must still say they
implement an interface

I An interface is just a named type independent of the class
hierarchy

Zach Tatlock CSE-505 2015, Lecture 23 7

Why subsume?

Subsuming to a supertype allows reusing code expecting the
supertype

It also allows hiding if you don’t have downcasts, etc. Example:

interface I { int distance(Point1 p); }

class Point1 implements I { ... I f() { self } ... }

But again objects are awkward for many binary methods

I distance takes a Point1, not an I

Zach Tatlock CSE-505 2015, Lecture 23 8



More subclassing

Breaking one direction of “subclassing = subtyping” allowed more
subtyping (so more code reuse and/or information hiding)

Breaking the other direction (“subclassing does not imply
subtyping”) allows more inheritance (so more code reuse)

Simple idea: If C extends D and overrides a method in a way that
makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ...

Int get_x(); Bool compare(P1); ... }

class P2 extends P1 { ... Bool compare(P2); ... }

But this is not always correct...

Zach Tatlock CSE-505 2015, Lecture 23 9

Subclass not a subtype

class P1 {

Int x;

Int get_x() { x }

Bool compare(P1 p) { self.get_x() == p.get_x() }

}

class P2 extends P1 {

Int y;

Int get_y() { y }

Bool compare(P2 p) { self.get_x() == p.get_x() &&

self.get_y() == p.get_y() }

}

I As expected, P2≤P1 is unsound (assuming compare in P2 is
overriding unlike in Java or C++)

Zach Tatlock CSE-505 2015, Lecture 23 10

Subclass not a subtype

I Can still inherit implementation (need not reimplement
get_x)

I We cannot always do this: what if get_x called
self.compare? Possible solutions:

I Re-typecheck get_x in subclass
I Use a “Really Fancy Type System”

There may be little use in allowing subclassing that is not subtyping

Zach Tatlock CSE-505 2015, Lecture 23 11

Summary of subclass vs. subtype

Separating types and classes expands the language, but clarifies
the concepts:

I Typing is about interfaces, subtyping about broader interfaces

I Subclassing is about inheritance and code-sharing

Combining typing and inheritance restricts both

I Most OOP languages purposely confuse subtyping (about
type-checking) and inheritance (about code-sharing), which is
reasonable in practice

I But please use subclass to talk about inheritance and subtype
to talk about static checking

Zach Tatlock CSE-505 2015, Lecture 23 12



Static Overloading

So far, we have assumed every method had a different name

I Same name implied overriding and required a subtype

Many OOP languages allow the same name for different methods
with different argument types:

A f(B x) { ... }

C f(D x, E y) { ... }

F f(G x, H z) { ... }

Complicates definition of method-lookup for e1.m(e2,...,en)

Previously, we had dynamic-dispatch on e1: method-lookup a
function of the class of the object e1 evaluates to (at run-time)

We now have static overloading: Method-lookup is also a function
of the types of e2,...,en (at compile-time)

Zach Tatlock CSE-505 2015, Lecture 23 13

Static Overloading Continued

Because of subtyping, multiple methods can match a call!

“Best-match” can be roughly “Subsume fewest arguments. For a
tie, allow subsumption to immediate supertypes and recur”

Ambiguities remain (no best match):

I A f(B) vs. C f(B) (usually rejected)

I A f(I) vs. A f(J) for f(e) where e has type T , T ≤ I,
T ≤ J and I,J are incomparable (possible with multiple
interfaces or multiple inheritance)

I A f(B,C) vs. A f(C,B) for f(e1,e2) where B ≤ C, and
e1 and e2 have type B

Type systems often reject ambiguous calls or use ad hoc rules to
give a best match (e.g., “left-argument precedence”)

Zach Tatlock CSE-505 2015, Lecture 23 14

Multiple Dispatch

Static overloading saves keystrokes from shorter method-names

I We know the compile-time types of arguments at each
call-site, so we could call methods with different names

Multiple (dynamic) dispatch (a.k.a. multimethods) is more
interesting: Method-lookup a function of the run-time types of
arguments

It’s a natural generalization: the “receiver” argument is no longer
treated differently!

So e1.m(e2,...,en) is just sugar for m(e1,e2,...,en)

I It wasn’t before, e.g., when e1 is self and may be a subtype

Zach Tatlock CSE-505 2015, Lecture 23 15

Example

class A { int f; }

class B extends A { int g; }

Bool compare(A x, A y) { x.f == y.f }

Bool compare(B x, B y) { x.f == y.f && x.g == y.g }

Bool f(A x, A y, A z) { compare(x,y) && compare(y,z) }

Neat: late-binding for both arguments to compare (choose second
method if both arguments are subtypes of B, else first method)

With power comes danger. Tricky question: Can we add “&&
compare(x,z)” to body of f and have an equivalent function?

I With static overloading?

I With multiple dispatch?

Zach Tatlock CSE-505 2015, Lecture 23 16



Pragmatics

Not clear where multimethods should be defined

I No longer “belong to a class” because receiver isn’t special

Multimethods are “more OOP” because dynamic dispatch is the
essence of OOP

Multimethods are “less OOP” because without a distinguished
receiver the analogy to physical objects is reduced

Nice paper in OOPSLA08: “Multiple Dispatch in Practice”

Zach Tatlock CSE-505 2015, Lecture 23 17

Revenge of Ambiguity

The “no best match” issues with static overloading exist with
multimethods and ambiguities arise at run-time

It’s undecidable if “no best match” will happen:

// B <= C

A f(B,C) {...}

A f(C,B) {...}

unit g(C a, C b) { f(a,b); /* may be ambiguous */ }

Possible solutions:

I Raise exception when no best match

I Define “best match” such that it always exists

I A conservative type system to reject programs that might
have a “no best match” error when run

Zach Tatlock CSE-505 2015, Lecture 23 18


