
CSE 505: Programming Languages

Lecture 16 —
Evaluation Contexts

First-Class Continuations
Continuation-Passing Style

Zach Tatlock
Winter 2015

GOTO the past / programs choose their own adventure.

Zach Tatlock CSE 505 Winter 2015, Lecture 16 2

But first, some clean up.

Our semantics:
Boring rules to grind sub-expressions down:

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v1, e2)→ (v1, e

′
2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2
Interesting rules that actually do work:

(λx. e) v → e[v/x] (v1, v2).1→ v1 (v1, v2).2→ v2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ay. e1 | Bx. e2 → e2[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16 3

But first, some clean up.

Our semantics:
Boring rules to grind sub-expressions down:

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v1, e2)→ (v1, e

′
2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2
Interesting rules that actually do work:

(λx. e) v → e[v/x] (v1, v2).1→ v1 (v1, v2).2→ v2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ay. e1 | Bx. e2 → e2[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16 4

But first, some clean up.

Our semantics:
Boring rules to grind sub-expressions down:

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v1, e2)→ (v1, e

′
2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2
Interesting rules that actually do work:

(λx. e) v → e[v/x] (v1, v2).1→ v1 (v1, v2).2→ v2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ay. e1 | Bx. e2 → e2[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16 5

We can do better: Separate concerns

Evaluation contexts define where interesting work can happen:

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2
| A(E) | B(E) | (match E with Ax. e1 | By. e2)

How many [·] (“holes”) can an evaluation context have? Only one.

E[e] just means to “fill the hole” in E with e:

([·].1)[(1, 2)] = (1, 2).1

([·], λx.x)[1] = (1, λx.x)

([·] x y)[λa. λb. b a] = (λa. λb. b a) x y

Zach Tatlock CSE 505 Winter 2015, Lecture 16 6

We can do better: Separate concerns

Evaluation contexts define where interesting work can happen:

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2
| A(E) | B(E) | (match E with Ax. e1 | By. e2)

E[e] just means to “fill the hole” in E with e.

Now we can cleanly separate our semantics:

e→ e′ with 1 rule:
e

p→ e′

E[e]→ E[e′]

e
p→ e′ does all the “interesting work”:

(λx. e) v
p→ e[v/x] (v1, v2).1

p→ v1 (v1, v2).2
p→ v2

match A(v) with Ax. e1 | By. e2 p→ e1[v/x]

match B(v) with Ay. e1 | Bx. e2 p→ e2[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16 7

Evaluation with evaluation contexts

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2
| A(E) | B(E) | (match E with Ax. e1 | By. e2)

Evaluation relies on decomposition (unstapling the correct subtree)

I Given e, find E, ea, e′a such that e = E[ea] and ea
p→ e′a

Many possible eval contexts may match a given e ...

([·])[(1, (1, (1, (1, 1))))] = (1, (1, (1, (1, 1))))

((1, [·]))[(1, (1, (1, 1)))] = (1, (1, (1, (1, 1))))

((1, (1, [·])))[(1, (1, 1))] = (1, (1, (1, (1, 1))))

((1, (1, (1, [·]))))[(1, 1)] = (1, (1, (1, (1, 1))))

((1, (1, (1, (1, [·])))))[1] = (1, (1, (1, (1, 1))))

Zach Tatlock CSE 505 Winter 2015, Lecture 16 8

Evaluation with evaluation contexts

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2
| A(E) | B(E) | (match E with Ax. e1 | By. e2)

Evaluation relies on decomposition (unstapling the correct subtree)

I Given e, find E, ea, e′a such that e = E[ea] and ea
p→ e′a

Unique Decomposition Theorem: at most one decomposition of e

I E carefully picks leftmost non-value sub-expression

I Hence eval is deterministic: at most one primitive step applies

Progress Theorem (restated): If e is well-typed, then there is a
decomposition or e is a value

Zach Tatlock CSE 505 Winter 2015, Lecture 16 9

Evaluation Contexts: So what?

Small-step semantics (old) and evaluation-context semantics (new)
are very similar:

I Totally equivalent step sequence
I (made both left-to-right call-by-value)

I Just rearranged things to be more concise: Each boring rule
became a form of E

I Both “work” the same way:
I Find the next place in the program to take a “primitive step”
I Take that step
I Plug the result into the rest of the program
I Repeat (next “primitive step” could be somewhere else) until

you can’t anymore (value or stuck)

Evaluation contexts so far just cleanly separate the “find and plug”
from the “take that step” by building an explicit E

Zach Tatlock CSE 505 Winter 2015, Lecture 16 10

Continuations

Now that we have defined E explicitly in our metalanguage, what
if we also put it on our language

I From metalanguage to language is called reification

First-class continuations:

e ::= . . . | letcc x. e | throw e e | cont E
v ::= . . . | cont E
E ::= . . . | throw E e | throw v E

E[letcc x. e]→ E[(λx. e)(cont E)] E[throw (cont E′) v]→ E′[v]

I New operational rules for→ not
p→ because “the E matters”

I letcc x. e grabs the current evaluation context (“the stack”)

I throw (cont E′) v restores old context: “jump somewhere”

I cont E not in source programs: “saved stack (value)”

Zach Tatlock CSE 505 Winter 2015, Lecture 16 11

Examples (exceptions-like)

1 + (letcc k. 2 + 3)→∗ 6

1 + (letcc k. 2 + (throw k 3))→∗ 4

1 + (letcc k. (throw k (2 + 3)))→∗ 6

1 + (letcc k. (throw k (throw k (throw k 2))))→∗ 3

Zach Tatlock CSE 505 Winter 2015, Lecture 16 12

Another view

If you’re confused, think call stacks:

I What if your favorite language had operations for:
I Store current stack in x
I Replace current stack with stack in x

I “Resume the stack’s hole” with something different or when
mutable state is different

I Else you are sure to have an infinite loop since you will later
resume the stack again

Zach Tatlock CSE 505 Winter 2015, Lecture 16 13

Example (“time travel”)

SML/NJ has continuations. This runs and binds 10 to z:

open SMLofNJ.Cont

val g : int cont option ref = ref NONE

val x = ref true (* avoids infinite loop *)

val y = ref (1 + 2 + (callcc (fn k => ((g := SOME k); 3))))

val z = if !x then (x := false; throw (valOf (!g)) 7) else !y

Zach Tatlock CSE 505 Winter 2015, Lecture 16 14

Is this useful?

First-class continuations are a single construct sufficient for:

I Exceptions

I Cooperative threads (including coroutines)
I “yield” captures the continuation (the “how to resume me”)

and gives it to the scheduler (implemented in the language),
which then throws to another thread’s “how to resume me”

I Other crazy things
I Often called the “goto of functional programming” —

incredibly powerful, but nonstandard uses are usually
inscrutable

I Key point is that we can “jump back in” unlike boring-old
exceptions

Zach Tatlock CSE 505 Winter 2015, Lecture 16 15

Where are we

Done:

I Redefined our operational semantics using evaluation contexts

I That made it easy to define first-class continuations

I Example uses of continuations

Now: How the heck do we implement this?

Rather than adding a powerful primitive, we can achieve the same
effect via a whole-program translation into a sublanguage
(source-to-source transformation)

I Every function takes extra arg: continuation says what’s next

I Never “return” — instead call current continuation w/ result

I Every expression becomes a continuation-accepting function

I Will be able to reintroduce letcc and throw “for free”

Zach Tatlock CSE 505 Winter 2015, Lecture 16 16

CPS examples

Invariant: every function takes continuation as extra argument

Zach Tatlock CSE 505 Winter 2015, Lecture 16 17

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ ...

Zach Tatlock CSE 505 Winter 2015, Lecture 16 18

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k = ...

Zach Tatlock CSE 505 Winter 2015, Lecture 16 19

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k = k (x * y)

Zach Tatlock CSE 505 Winter 2015, Lecture 16 20

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k = k (x * y)

let add’ x y k = k (x + y)

let sub’ x y k = k (x - y)

let eq’ x y k = k (x = y)

Zach Tatlock CSE 505 Winter 2015, Lecture 16 21

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k = k (x * y)

let add’ x y k = k (x + y)

let sub’ x y k = k (x - y)

let eq’ x y k = k (x = y)

let rec fact’ n k = ...

Zach Tatlock CSE 505 Winter 2015, Lecture 16 22

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k = k (x * y)

let add’ x y k = k (x + y)

let sub’ x y k = k (x - y)

let eq’ x y k = k (x = y)

let rec fact’ n k =

(eq’ n 0 (fun b ->

(if b then

(k 1)

else

(sub’ n 1 (fun m ->

(fact’ m (fun p ->

(mult’ n p k))))))))

Zach Tatlock CSE 505 Winter 2015, Lecture 16 23

CPS examples

OK, now you convert :

let fact n =

aux n 1

let rec aux n acc =

if n = 0 then

acc

else

aux (n - 1) (n * acc)

Zach Tatlock CSE 505 Winter 2015, Lecture 16 24

The CPS transformation (one way to do it)

A metafunction from expressions to expressions

Example source language (other features similar):

e ::= x | λx. e | e e | c | e+ e
v ::= x | λx. e | c

CPSE(v) = λk. k CPSV(v)
CPSE(e1 + e2) = λk. CPSE(e1) λx1. CPSE(e2) λx2. k (x1+x2)

CPSE(e1 e2) = λk. CPSE(e1) λf. CPSE(e2) λx. f x k

CPSV(c) = c
CPSV(x) = x

CPSV(λx. e) = λx. λk. CPSE(e) k

To run the whole program e, do CPSE(e) (λx. x)

Zach Tatlock CSE 505 Winter 2015, Lecture 16 25

Result of the CPS transformation

I Correctness: e is equivalent to CPSE(e) λx. x

I If whole program has type τP and e has type τ , then
CPSE(e) has type (τ → τP)→ τP

I Fixes evaluation order: CPSE(e) will evaluate e in
left-to-right call-by-value

I Other similar transformations encode other evaluation orders
I Every intermediate computation is bound to a variable (helpful

for compiler writers)

I For all e, evaluation of CPSE(e) stays in this sublanguage:

e ::= v | v v | v v v | v (v + v)
v ::= x | λx. e | c

I Hence no need for a call-stack: every call is a tail-call
I Now the program is maintaining the evaluation context via a

closure that has the next “link” in its environment that has the
next “link” in its environment, etc.

Zach Tatlock CSE 505 Winter 2015, Lecture 16 26

Encoding first-class continuations

If you apply the CPS transform, then you can add letcc and throw
“for free” right in the source language

CPSE(letcc k. e) = λk. CPSE(e) k
CPSE(throw e1 e2) = λk. CPSE(e1) λx1. CPSE(e2) λx2. x1 x2︸ ︷︷ ︸

or just x1

I letcc gets passed the current continuation just as it needs

I throw ignores the current continuation just as it should

You can also manually program in this style (fully or partially)

I Has other uses as a programming idiom too...

Zach Tatlock CSE 505 Winter 2015, Lecture 16 27

A useful advanced programming idiom

I A first-class continuation can “reify session state” in a
client-server interaction

I If the continuation is passed to the client, which returns it
later, then the server can be stateless

I Suggests CPS for web programming
I Better: tools that do the CPS transformation for you

I Gives you a “prompt-client” primitive without server-side state

I Because CPS uses only tail calls, it avoids deep call stacks
when traversing recursive data structures

I See lec13code.ml for this and related idioms

In short, “thinking in terms of CPS” is a powerful technique few
programmers have

Zach Tatlock CSE 505 Winter 2015, Lecture 16 28

