CSE 505: Programming Languages

Lecture 16 —
Evaluation Contexts

First-Class Continuations
Continuation-Passing Style

Zach Tatlock
Winter 2015

GOTO the past / programs choose their own adventure.

Lo
=
=1
T
3
g W]
S e <
o g il -
s e 4]
T =
e
R r o =
-
= 4
b -
=]
g ::
s
£ 3
=z
e eyt g =
=
580
e = @] |
j< i
CY

L
e A v, iy

;W ’?.‘.‘H‘
er n

My o
Ths.

ey m

L ey

"
L

Lecture 1

Zach Tatlock

But first, some clean up.

Our semantics:

e1 — € ez — e, e € e —> e

ere; >ejex vex—ve, A(e) > A(e’) B(e) - B(e)

e1 — €] e2 — € e —¢e e —¢e

(e1,e2) — (e}, e2) (vi,e2) = (vi,e5) el —e€'l e2—e'.2

e e

match e with Az. e; | By. e; — match e’ with Az. e; | By. ex

(Azx. e) v — e[v/x] (v1,v2).1 — vy (v1,v2).2 — v2

match A(v) with Az. ey | By. e2 — e;[v/x]

match B(v) with Ay. e; | Bz. ez — ea[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16

But first, some clean up.

Our semantics:
Boring rules to grind sub-expressions down:

e1 — € ez — €, e —é e — e

e1 ez > el es vex —>ve, A(e) — A(e’) B(e) = B(€)

e1 — €] e2 — €, e — e e — e

(e1,e2) — (e}, e2) (vi,e2) = (vi,e5) el —e€'l e2—e'.2

e e

match e with Az. e; | By. e; — match e’ with Az. e; | By. e

(Azx. e) v — elv/x] (v1,v2).1 > v (v1,v2).2 = va

match A(v) with Az. e; | By. e2 — e;[v/x]

match B(v) with Ay. e; | Bz. ez — ez[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16

But first, some clean up.

Our semantics:
Boring rules to grind sub-expressions down:

e1 — € ex — €, e — e e — e

e1ex e ea ver—ve, A(e) = A(e) B(e) = B(€)

e1 — €] ez — € e —> e e — e

(e1,e2) — (e}, e2) (vi,e2) = (vi,e5) el —e€'l e2—e'.2

e e

match e with Az. e; | By. e; — match e’ with Az. e; | By. ex

Interesting rules that actually do work:

(Azx. e) v — e[v/x] (v1,v2).1 — vy (v1,v2).2 — v2

match A(v) with Az. ey | By. e2 — e1[v/x]

match B(v) with Ay. e; | Bx. e2 — ez[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16

We can do better: Separate concerns

Evaluation contexts define where interesting work can happen:

E = [|]|Ee|vE]|(E,e)| (v,E)|E1l|E.2
| A(E) | B(E) | (match E with Azx. e; | By. e2)

How many [-] (“holes”) can an evaluation context have? Only one.
Ele] just means to “fill the hole” in E with e:

([]-D[(A,2)] = (1,2).1

([], Az.z)[1] = (1, Az.x)

([(]zy)Aa. Ab. ba] = (Aa. Ab. ba) z y

Zach Tatlock CSE 505 Winter 2015, Lecture 16

We can do better: Separate concerns

Evaluation contexts define where interesting work can happen:

E == [|]|Ee|vE|(E,e)|(v,E)|E1|E.?2
| A(E) | B(E) | (match E with Az. ey | By. e2)

Ele] just means to “fill the hole” in E with e.
Now we can cleanly separate our semantics:

. e e
e — e with 1 rulet —————-
Ele] — E[€]

e B e’ does all the “interesting work’ :

(Az. e) v > e[v/x] (v1,v2).1 5 vy (v1,v2).2 D vy

match A(v) with Az. e; | By. ez = eq[v/x]

match B(v) with Ay. e; | Bz. ez = es[v/x]

Zach Tatlock CSE 505 Winter 2015, Lecture 16

Evaluation with evaluation contexts
E == [|]|Ee|vE|(E,e)|(v,E)|E1|E.2
| A(E) | B(FE) | (match E with Ax. e; | By. e2)

Evaluation relies on decomposition (unstapling the correct subtree)

> Given g, find E, eq, €], such that e = E[eg] and eq LY el

Many possible eval contexts may match a given e ...

(DI, (1, (1, (L)) = (1,1, (1, (1,1))))
(L [IDIA, @@ = @, 1, (1, (1,1))))
(1, L DN, @,1))] = 1,1, (1,(1,1))))
(1 1 @I = 1,1, (1, (1,1))))
(@@ @Dyl = @1, 1,(1,1))))

CSE 505 Winter 2015, Lecture 16

Evaluation with evaluation contexts
E == [|]|Ee|vE|(E,e)|(v,E)|E1|E.2
| A(E) | B(FE) | (match E with Ax. e; | By. e2)

Evaluation relies on decomposition (unstapling the correct subtree)

> Given e, find E, eq, €], such that e = E[ey] and eq L el

Unique Decomposition Theorem: at most one decomposition of e
» FE carefully picks leftmost non-value sub-expression

> Hence eval is deterministic: at most one primitive step applies

Progress Theorem (restated): If e is well-typed, then there is a
decomposition or € is a value

Zach Tatlock CSE 505 Winter 2015, Lecture 16

Evaluation Contexts: So what?

Small-step semantics (old) and evaluation-context semantics (new)
are very similar:
» Totally equivalent step sequence
» (made both left-to-right call-by-value)

> Just rearranged things to be more concise: Each boring rule
became a form of E

» Both “work” the same way:

» Find the next place in the program to take a “primitive step”
Take that step
Plug the result into the rest of the program
Repeat (next “primitive step” could be somewhere else) until
you can't anymore (value or stuck)

v vYyy

Evaluation contexts so far just cleanly separate the “find and plug”
from the “take that step” by building an explicit E

Zach Tatlock CSE 505 Winter 2015, Lecture 16

Continuations

Now that we have defined E explicitly in our metalanguage, what
if we also put it on our language

» From metalanguage to language is called reification

First-class continuations:

... | letcc x. e | throw e e | cont E

v n= ...|contE
E := ...|throw E e | throw v E
E[letcc . €] — E[(Az. e)(cont E)] E[throw (cont E’) v] — E’[v]

» New operational rules for — not 2 because “the E matters”

» letcc x. e grabs the current evaluation context (“the stack™)

» throw (cont E’) v restores old context: “jump somewhere”

» cont E not in source programs: “saved stack (value)”

Zach Tatlock

CSE 505 Winter 2015, Lecture 16

11

Examples (exceptions-like)

1+ (letcc k. 24+ 3) —* 6
1 + (letcc k. 2 + (throw k 3)) —* 4
1 4 (letcc k. (throw k£ (2 4+ 3))) —* 6

1 + (letcc k. (throw k (throw k (throw k 2)))) —* 3

Zach Tatlock CSE 505 Winter 2015, Lecture 16

12

Another view

If you're confused, think call stacks:

» What if your favorite language had operations for:

» Store current stack in x
» Replace current stack with stack in x

> “Resume the stack’s hole” with something different or when
mutable state is different

> Else you are sure to have an infinite loop since you will later
resume the stack again

Zach Tatlock CSE 505 Winter 2015, Lecture 16

13

Example (“time travel”)

SML/NJ has continuations. This runs and binds 10 to z:

open SMLofNJ.Cont
val g : int cont option
val x = ref true (* avo
val y = ref (1 + 2 + (c
val z = if !x then (x

ref = ref NONE
ids infinite loop *)
allcc (fn k => ((g := SOME k); 3))))

:= false; throw (valOf (!g)) 7) else !y

Zach Tatlock CSE 505 Winter 2015, Lecture 16

14

Is this useful?

First-class continuations are a single construct sufficient for:

» Exceptions

» Cooperative threads (including coroutines)
» "yield" captures the continuation (the “how to resume me")
and gives it to the scheduler (implemented in the language),
which then throws to another thread’s “how to resume me"

» Other crazy things

» Often called the “goto of functional programming” —
incredibly powerful, but nonstandard uses are usually
inscrutable

» Key point is that we can “jump back in" unlike boring-old
exceptions

Zach Tatlock CSE 505 Winter 2015, Lecture 16

15

Where are we

Done:
» Redefined our operational semantics using evaluation contexts
» That made it easy to define first-class continuations

» Example uses of continuations

Now: How the heck do we implement this?

Rather than adding a powerful primitive, we can achieve the same
effect via a whole-program translation into a sublanguage
(source-to-source transformation)

» Every function takes extra arg: continuation says what's next
» Never “return” — instead call current continuation w/ result
» Every expression becomes a continuation-accepting function

» Will be able to reintroduce letcc and throw “for free”

Zach Tatlock CSE 505 Winter 2015, Lecture 16

16

CPS examples

Invariant: every function takes continuation as extra argument

Zach Tatlock CSE 505 Winter 2015, Lecture 16

17

CPS examples
Invariant: every function takes continuation as extra argument

let mult’

Zach Tatlock CSE 505 Winter 2015, Lecture 16

18

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k =

Zach Tatlock CSE 505 Winter 2015, Lecture 16

19

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k =k (x * y)

Zach Tatlock CSE 505 Winter 2015, Lecture 16

20

CPS examples

Invariant: every function takes continuation as extra argument

let
let
let
let

Zach Tatlock

mult’
add’
sub’

eq’

X
X
X
X

*

k (x * y)
k (x +7y)
k (x - y)
k (x =7y)

<+

CSE 505 Winter 2015, Lecture 16

21

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k =k (x * y)
let add’ xy k =k (x +y)
let sub’ xy k =k (x - y)
let eq> xyk=k (x =7y)

let rec fact’ nk = ...

Zach Tatlock CSE 505 Winter 2015, Lecture 16

CPS examples

Invariant: every function takes continuation as extra argument

let mult’ x y k =k (x * y)
let add’ xy k =k (x +y)
let sub’ xy k =k (x - y)
let eq> xyk=k (x =7y)

let rec fact’ n k =
(eq> n 0 (fun b ->
(if b then
(k 1)
else
(sub> n 1 (fun m ->
(fact’ m (fun p —>
(mult’ n p k))))))

Zach Tatlock CSE 505 Winter 2015, Lecture 16

CPS examples

OK, now you convert :

let fact n =
aux n 1

let rec aux n acc
if n = 0 then
acc
else
aux (n - 1) (n

Zach Tatlock

* acc)

CSE 505 Winter 2015, Lecture 16

24

The CPS transformation (one way to do it)

A metafunction from expressions to expressions

Example source language (other features similar):

e 2= x|Ax.e|lee|c|le+te
v = x|Ar.elc
CPSg(v) = Ak. k CPSy(v)

CPSE(61 + 62)
CPSE(el 62)

Ak. CPSE(el))\1131. CPSE(ez))\:132. k (2121—|—£IZ2)
Ak. CPSg(e1) Af. CPSg(es) Az. f x k

CPSy(c) = ¢
CPSy(z) = =
CPSy(Az. e) = Axz. Ak. CPSg(e) k

To run the whole program e, do CPSg(e) (Az. x)

Zach Tatlock CSE 505 Winter 2015, Lecture 16 25

Result of the CPS transformation

» Correctness: e is equivalent to CPSg(e) Ax. x

Zach Tatlock

If whole program has type 7p and e has type 7, then
CPSg(e) has type (1 — 7p) — TP
Fixes evaluation order: CPSg(e) will evaluate e in
left-to-right call-by-value
» Other similar transformations encode other evaluation orders
» Every intermediate computation is bound to a variable (helpful
for compiler writers)

For all e, evaluation of CPSg(e) stays in this sublanguage:

e 2= v|vv|vvv|v(v+v)
v u= z|Az.e|c

Hence no need for a call-stack: every call is a tail-call
» Now the program is maintaining the evaluation context via a
closure that has the next “link” in its environment that has the
next “link” in its environment, etc.

CSE 505 Winter 2015, Lecture 16

26

Encoding first-class continuations

If you apply the CPS transform, then you can add letcc and throw
“for free" right in the source language

CPSg(letcc k. e) = Ak. CPSg(e) k
CPSg(throw e; e2) = MAk. CPSg(e1) Ax1. CPSg(e2) Axa. 1 x2
—_—————

or just a1

> letcc gets passed the current continuation just as it needs

» throw ignores the current continuation just as it should

You can also manually program in this style (fully or partially)

» Has other uses as a programming idiom too...

Zach Tatlock CSE 505 Winter 2015, Lecture 16 27

A useful advanced programming idiom

» A first-class continuation can “reify session state” in a
client-server interaction

» If the continuation is passed to the client, which returns it
later, then the server can be stateless

» Suggests CPS for web programming

» Better: tools that do the CPS transformation for you

> Gives you a “prompt-client” primitive without server-side state
» Because CPS uses only tail calls, it avoids deep call stacks

when traversing recursive data structures
» See E17_Continuations.v for this and related idioms

In short, “thinking in terms of CPS" is a powerful technique few
programmers have

Zach Tatlock CSE 505 Winter 2015, Lecture 16

28

