Finally, some formal PL content

For our first formal language, let's leave out functions, objects,
records, threads, exceptions, ...

CSE-505: Programming Languages What's left: integers, mutable variables, control-flow

Lecture 2 — Syntax (Abstract) syntax using a common metalanguage:
“A program is a statement s, which is defined as follows"

s un= skip|x:=e|s;s|ifess|whilees
Zach Tatlock e u= c|a:|e—|—e|e*e
2016 (c € {.. -1,0,1,2,...})

(513 € {XlaXZa-'-aY1aY2a--°9zlazza°-'7---})

Zach Tatlock CSE-505 2016, Lecture 2 2
Syntax Definition Examples
s u= skip|x:=e|s;s|ifess|whilees s u= skip|x:=e|s;s|ifess|whilees
= c|a:|e—i—e|e*e e == c|lxz|etelexe
(c € {.. -1,0,1,2,...})
(33 S {X17X27°'°9y19y29"'9219229“'7'-'}) if
/N / .
x skip =
» Blue is metanotation: ::= for “can be a” and | for “or” / \ / ‘ AN /\
x skip := x Y

» Metavariables represent “anything in the syntax class’ Y/£\12 X/ \y Y/Z\l2

» By abstract syntax, we mean that this defines a set of trees
» Node has some label for “which alternative”
» Children are more abstract syntax (subtrees) from the
appropriate syntax class

Zach Tatlock CSE-505 2016, Lecture 2 3 Zach Tatlock CSE-505 2016, Lecture 2

Comparison to ML Comparison to strings

/if\ e \. /if\ /;\
¢ .

x skip if :\ x skip i -
::/ \:= X/sk‘ip\:z x/ y / \ VLN /
ANA /\ =/=\ /=\ x skip :/:\ X Yy
Va2 xy y 42 gy S

type exp = Const of int | Var of string
I

Add of exp * exp | Mult of exp * exp We are used to writing programs in concrete syntax, i.e., strings
type stmt = Skip | Assign of string * exp | Seq of stmt * stmt

If of * * hil f * . . .
| of exp * stmt * stmt | While of exp * stmt That can be ambiguous: if x skipy :=42 ;x:=1y

If (Var("x"),Skip,Seq(Assign("y",Const 42),Assign("x",Var "y")))) o _ _)
Seq(If (Var("x"),Skip,Assign("y",Const 42)),Assign("x",Var "y")) Since writing strings is such a convenient way to represent trees,

we allow ourselves parentheses (or defaults) for disambiguation
Very similar to trees built with ML datatypes P () & ’

p " p " » Trees are our “truth” with strings as a “convenient notation’
> ML needs “extra nodes” for, e.g., “e can be a ¢

if x skip (y := 42 ;x :=y) versus (if x skip y := 42) ;x:=7y

> Also pretending ML's int is an integer

Zach Tatlock CSE-505 2016, Lecture 2) Zach Tatlock CSE-505 2016, Lecture 2
Last word on concrete syntax Inductive definition
Converting a string into a tree is parsing s u= skip|x:=e|s;s|ifess|whilees

e == clx|et+e|exe
Creating concrete syntax such that parsing is unambiguous is one) _ o o S
challenge of grammar design This grammar is a finite description of an infinite set of trees
» Always trivial if you require enough parentheses or keywords
» Extreme case: LISP, 1960s; Scheme, 1970s
» Extreme case: XML, 1990s
» Very well studied in 1970s and 1980s, now typically the least

interesting part of a compilers course

The apparent self-reference is not a problem, provided the
definition uses well-founded induction

> Just like an always-terminating recursive function uses
self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

. . . . ot > =
» Using strings only as a convenient shorthand and asking if it's Let Eo = 0
ever unclear what tree we mean » Fori > 0, let E; be E;_; union “expressions of the form c,

x, e1 + eg, or e *x eg where e1,es € E;_1"

The set E is what we mean by our compact metanotation

For the rest of this course, we start with abstract syntax

Zach Tatlock CSE-505 2016, Lecture 2 7 Zach Tatlock CSE-505 2016, Lecture 2

Inductive definition Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let's get

s u= skip|x:=e|s;s|ifess|whilees
the idea of proving things carefully...

e = clxz|etel|lexe

> Let Eo = 0. Theorem 1: There exist expressions with three constants.
» Fort > 0, let E; be E;_1 union “expressions of the form ¢,
x, e1 + eo, or e1 *x ez where e1,e3 € E;_1".

The set E is what we mean by our compact metanotation

To get it: What set is E17 E97?
Could explain statements the same way: What is S17 S3? S7?

Zach Tatlock CSE-505 2016, Lecture 2 9 Zach Tatlock CSE-505 2016, Lecture 2
Our First Theorem Our Second Theorem
There exist expressions with three constants. All expressions have at least one constant or variable.
Pedantic Proof: Consider e = 1 4 (2 4 3). Showing e € Ej3 Pedantic proof: By induction on 2, for all e € E;, e has > 1
suffices because F3 C E. Showing 2+ 3 € Es and 1 € E, constant or variable.
suffices... » Base: ¢ = 0 implies E; = 0
. o > Inductive: ¢ > 0. Consider arbitrary e € E; by cases:
PL-style proof: Consider e = 1 + (2 4 3) and definition of E. ec B,
e=c...

e=uwx...
e =e; + ez whereeyj,es € E;_q ...
e = ey ey whereey,ea € E;_ 4 ...

Theorem 2: All expressions have at least one constant or variable.

vV vy VvV VvYy

Zach Tatlock CSE-505 2016, Lecture 2 11 Zach Tatlock CSE-505 2016, Lecture 2

A "“Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an
expression) e. Cases:

> C ...
> T ...
» e1+ ez ...
> e kes ...

Structural induction invokes the induction hypothesis on smaller
terms. It is equivalent to the pedantic proof, and more convenient
in PL

Zach Tatlock CSE-505 2016, Lecture 2

