
CSE-505: Programming Languages

Lecture 5 — Pseudo-Denotational Semantics

Zach Tatlock
2016

A different approach

Operational semantics defines an interpreter, from abstract syntax
to abstract syntax. Metalanguage is inference rules (slides) or
OCaml (interp.ml)

Denotational semantics defines a compiler (translater), from
abstract syntax to a different language with known semantics

Target language is math, but we’ll make it a tiny core of OCaml
(hence “pseudo”)

Metalanguage is math or OCaml (we’ll show both)

Zach Tatlock CSE-505 2016, Lecture 5 2

The basic idea

A heap is a math/ML function from strings to integers:

string → int

An expression denotes a math/ML function from heaps to integers

den(e) : (string → int)→ int

A statement denotes a math/ML function from heaps to heaps

den(s) : (string → int)→ (string → int)

Now just define den in our metalanguage (math or ML),
inductively over the source language abstract syntax

Zach Tatlock CSE-505 2016, Lecture 5 3

Expressions

den(e) : (string → int)→ int

den(c) = fun h -> c

den(x) = fun h -> h x
den(e1 + e2) = fun h -> (den(e1) h) + (den(e2) h)

den(e1 ∗ e2) = fun h -> (den(e1) h) * (den(e2) h)

In plus (and times) case, two “ambiguities”:

I “+” from meta language or target language?
I Translate abstract + to OCaml +, (ignoring overflow)

I When do we denote e1 and e2?
I Not a focus of the metalanguage. At “compile time”.

Zach Tatlock CSE-505 2016, Lecture 5 4



Switching metalanguage

With OCaml as our metalanguage, ambiguities go away

But it is harder to distinguish mentally between “target” and
“meta”

If denote in function body, then source is “around at run time”

I After translation, should be able to “remove” the definition of
the abstract syntax

I ML does not have such a feature, but the point is we no
longer need the abstract syntax

See denote.ml

Zach Tatlock CSE-505 2016, Lecture 5 5

Statements, w/o while

den(s) : (string → int)→ (string → int)

den(skip) = fun h -> h

den(x := e) =
fun h -> (fun v -> if x=v then den(e) h else h v)

den(s1; s2) = fun h -> den(s2) (den(s1) h)

den(if e s1 s2) =
fun h -> if den(e) h > 0 then den(s1) h else den(s2) h

Same ambiguities; same answers

See denote.ml

Zach Tatlock CSE-505 2016, Lecture 5 6

While

den(while e s) = | While(e,s) ->

let rec f h = let d1=denote_exp e in

if (den(e) h)>0 let d2=denote_stmt s in

then f (den(s) h) let rec f h =

else h in if (d1 h)>0

f then f (d2 h)

else h in

f

The function denoting a while statement is inherently recursive!

Good thing our target language has recursive functions!

Why doesn’t den(while e s) = den(if e (s;while e s) skip)
make any sense?

Zach Tatlock CSE-505 2016, Lecture 5 7

Two common mistakes

A denotational semantics should “eagerly” translate the entire
program

I E.g., both branches of an if

But a denotational semantics should “terminate”

I I.e., avoid any circular definitions in the translating

I The result of the translation can use (well-founded) recursion

I E.g., compiling a while-loop should not produce an infinite
amount of code

Zach Tatlock CSE-505 2016, Lecture 5 8



Finishing the story

let denote_prog s =

let d = denote_stmt s in

fun () -> (d (fun x -> 0)) "ans"

Compile-time: let x = denote_prog (parse file)

Run-time: print_int (x ())

In-between: We have a OCaml program using only functions,
variables, ifs, constants, +, *, >, etc.

I Does not use any constructors of exp or stmt (e.g., Seq)

Zach Tatlock CSE-505 2016, Lecture 5 9

The real story

For “real” denotational semantics, target language is math

(And we write [[s]] instead of den(s))

Example: [[x := e]][[H]] = [[H]][x 7→ [[e]][[H]]]

There are two major problems, both due to while:

1. Math functions do not diverge, so no function denotes
while 1 skip

2. The denotation of loops cannot be circular

Zach Tatlock CSE-505 2016, Lecture 5 10

The elevator version, which we will not pursue

For (1), we “lift” the semantic domains to include a special ⊥
den(s) : (string → int)→ ((string → int) ∪ ⊥)

I Have to change meaning of den(s2) ◦ den(s1) appropriately

For (2), we use while e s to define a (meta)function f that given a
lifted heap-transformer X produces a lifted heap-transformer X′:

I If den(e)(den(H)) = 0, then den(H)

I Else X ◦ den(s)
Now let den(while e s) be the least fixed-point of f

I An hour of math to prove the least fixed-point exists

I Another hour to prove it is the limit of starting with ⊥ and
applying f over and over (i.e., any number of loop iterations)

I Keywords: monotonic functions, complete partial orders,
Knaster-Tarski theorem

Zach Tatlock CSE-505 2016, Lecture 5 11

Where we are

I Have seen operational and denotational semantics

I Connection to interpreters and compilers

I Useful for rigorous definitions and proving properties

I Next: Equivalence of semantics
I Crucial for compiler writers
I Crucial for code maintainers

I Then: Leave IMP behind and consider functions

But first: Will any of this help write an O/S service?

Zach Tatlock CSE-505 2016, Lecture 5 12


