A different approach

Operational semantics defines an interpreter, from abstract syntax
to abstract syntax. Metalanguage is inference rules (slides) or
OCaml (interp.ml)

CSE-505: Programming Languages

Denotational semantics defines a compiler (translater), from
Lecture 5 — Pseudo-Denotational Semantics abstract syntax to a different language with known semantics

Target language is math, but we'll make it a tiny core of OCaml
(hence “pseudo”)

Zach Tatlock

2016 Metalanguage is math or OCaml (we'll show both)

Zach Tatlock CSE-505 2016, Lecture 5 2

The basic idea Expressions

A heap is a math/ML function from strings to integers:
den(e) : (string — int) — int
string — int

den(c) = fun h -> ¢
den(x) = fun h ->hx

An expression denotes a math/ML function from heaps to integers den(e1 +e2) = fun h -> (den(e1) h) + (den(ez) h)
den(e; *e3) = fun h -> (den(e1) h) * (den(ez) h)

den(e) : (string — int) — int In plus (and times) case, two “ambiguities”:

. » “+" from meta language or target language?
A statement denotes a math/ML function from heaps to heaps guag & guag

» Translate abstract + to OCaml +, (ignoring overflow)
den(s) : (string — int) — (string — int)
» When do we denote e; and e5?
» Not a focus of the metalanguage. At “compile time”.
Now just define den in our metalanguage (math or ML),
inductively over the source language abstract syntax

Zach Tatlock CSE-505 2016, Lecture 5 3 Zach Tatlock CSE-505 2016, Lecture 5

Switching metalanguage Statements, w/o while

With OCaml as our metalanguage, ambiguities go away

den(s) : (string — int) — (string — int)
But it is harder to distinguish mentally between “target” and

“meta”
den (skip) = funh ->h
If denote in function body, then source is “around at run time” den(z := €) =
fun h -> (fun v -> if x=v then den(e) h else h v)
» After translation, should be able to “remove” the definition of den(sy;s2) = fun h -> den(sz) (den(sy) h)

the abstract syntax den(if e s1 s2) =

fun h -> if den(e) h > O then den(sy) h else den(sz) h
» ML does not have such a feature, but the point is we no

longer need the abstract syntax Same ambiguities; same answers
See denote.ml See denote.ml
Zach Tatlock CSE-505 2016, Lecture 5 5 Zach Tatlock CSE-505 2016, Lecture 5 6
While Two common mistakes
den(while e s) = | While(e,s) -> A denotational semantics should “eagerly” translate the entire
let rec £ h = let dl=denote_exp e in program _
if (den(e) h)>0 let d2=denote_stmt s in > E.g., both branches of an if
then f (den(s) h) let rec f h =
else h in if (d1 h)>0 But a denotational semantics should “terminate”
f then f (d2 h)

» l.e., avoid any circular definitions in the translating
else h in

c » The result of the translation can use (well-founded) recursion

» E.g., compiling a while-loop should not produce an infinite

The function denoting a while statement is inherently recursive! amount of code

Good thing our target language has recursive functions!

Why doesn’'t den(while e s) = den(if e (s;while e s) skip)
make any sense?

Zach Tatlock CSE-505 2016, Lecture 5 7 Zach Tatlock CSE-505 2016, Lecture 5

Finishing the story The real story
let denote_prog s = For “real” denotational semantics, target language is math
let d = denote_stmt s in

fun O -> (d (fun x -> 0)) "ans" (And we write [s] instead of den(s))

Example: [:= e]|[H] = [H] [z — [e][H]]
Compile-time: let x = denote_prog (parse file)
There are two major problems, both due to while:

Run-time: print_int (x O) 1. Math functions do not diverge, so no function denotes

_) while 1 skip
In-between: We have a OCaml program using only functions,

. : 2. Th n ion of | n ircul
variables, ifs, constants, +, *, >, etc. e denotation of loops cannot be circular

» Does not use any constructors of exp or stmt (e.g., Seq)

Zach Tatlock CSE-505 2016, Lecture 5 9 Zach Tatlock CSE-505 2016, Lecture 5

The elevator version, which we will not pursue Where we are

For (1), we “lift" the semantic domains to include a special L
den(s) : (string — int) — ((string — int) U L) » Have seen operational and denotational semantics

» Have to change meaning of den(s2) o den(sl) appropriately

For (2), we use while e s to define a (meta)function f that given a > Connection to interpreters and compilers

lifted heap-transformer X produces a lifted heap-transformer X':
» If den(e)(den(H)) = 0, then den(H)
» Else X o den(s) » Next: Equivalence of semantics

Now let den (while e s) be the least fixed-point of f > Crucial for compiler writers
» Crucial for code maintainers

» Useful for rigorous definitions and proving properties

» An hour of math to prove the least fixed-point exists

» Another hour to prove it is the limit of starting with L and
applying f over and over (i.e., any number of loop iterations)

» Then: Leave IMP behind and consider functions

» Keywords: monotonic functions, complete partial orders,

Y . : o
Knaster-Tarski theorem But first: Will any of this help write an O/S service?

Zach Tatlock CSE-505 2016, Lecture 5 11 Zach Tatlock CSE-505 2016, Lecture 5

