Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:

- Abstract syntax
- Operational semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- "Pseudo-denotational" semantics

Now:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next lecture: Local variables, lambda-calculus

What we need
Now the O / S writer is defining the packet-filter language!
Properties we wish of (untrusted) filters:

1. Do not corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)
Should we make up a language and "hope" it has these properties?

Language-based approaches

1. Interpret a language

+ clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C /assembly

+ clean denotational semantics, + employ existing optimizers,
- upfront cost, - unusual interface

3. Require a conservative subset of C /assembly

+ normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) - we'll get to (3)

A General Pattern

Packet filters move the code to the data rather than data to the code

General reasons: performance, security, other?
Other examples:

- Query languages
- Active networks
- Client-side web scripts (Javascript)

What is equivalence?
Equivalence depends on what is observable!

Note: Proofs may seem easy with the right semantics and lemmas

- (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more intesting things

Equivalence motivation

- Program equivalence (we change the program):
- code optimizer
- code maintainer
- Semantics equivalence (we change the language):
- interpreter optimizer
- language designer
- (prove properties for equivalent semantics with easier proof)

What is equivalence?
Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)

What is equivalence?
Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything

What is equivalence?
Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything
- not transitive

What is equivalence?
Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything
- not transitive
- Total I/O equivalence (same termination behavior, same ans)

What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything
- not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
- All (almost all?) variables have the same value

What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything
- not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
- All (almost all?) variables have the same value
- Equivalence plus complexity bounds
- Is $O\left(2^{n^{n}}\right)$ really equivalent to $O(n)$?
- Is "runs within 10 ms of each other" important?

What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything
- not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
- All (almost all?) variables have the same value
- Equivalence plus complexity bounds
- Is $O\left(2^{n^{n}}\right)$ really equivalent to $O(n)$?
- Is "runs within 10 ms of each other" important?
- Syntactic equivalence (perhaps with renaming)
- Too strict to be interesting?

What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
- while 1 skip equivalent to everything
- not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
- All (almost all?) variables have the same value
- Equivalence plus complexity bounds
- Is $O\left(2^{n^{n}}\right)$ really equivalent to $O(n)$?
- Is "runs within 10 ms of each other" important?
- Syntactic equivalence (perhaps with renaming)
- Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Program Example: Strength Reduction

Motivation: Strength reduction

- A common compiler optimization due to architecture issues

Theorem: $\boldsymbol{H} ; \boldsymbol{e} \boldsymbol{2} \Downarrow c$ if and only if $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e} \Downarrow c$
Proof sketch:

Program Example: Strength Reduction

Motivation: Strength reduction

- A common compiler optimization due to architecture issues

Theorem: $\boldsymbol{H} ; \boldsymbol{e * 2} \Downarrow \boldsymbol{c}$ if and only if $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e} \Downarrow c$
Proof sketch:

- Prove separately for each direction

Program Example: Strength Reduction

Motivation: Strength reduction

- A common compiler optimization due to architecture issues

Theorem: $\boldsymbol{H} ; \boldsymbol{e} \boldsymbol{*} \Downarrow \boldsymbol{c}$ if and only if $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e} \Downarrow \boldsymbol{c}$
Proof sketch:

- Prove separately for each direction
- Invert the assumed derivation, use hypotheses plus a little math to derive what we need

Program Example: Strength Reduction

Motivation: Strength reduction

- A common compiler optimization due to architecture issues

Theorem: $\boldsymbol{H} ; \boldsymbol{e} \boldsymbol{*} \Downarrow \boldsymbol{c}$ if and only if $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e} \Downarrow \boldsymbol{c}$
Proof sketch:

- Prove separately for each direction
- Invert the assumed derivation, use hypotheses plus a little math to derive what we need
- Hmm, doesn't use induction. That's because this theorem isn't very useful...

Program Example: Nested Strength Reduction

Theorem: If e^{\prime} has a subexpression of the form $e * \mathbf{2}$,
then $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}^{\prime}$ if and only if $\boldsymbol{H} ; \boldsymbol{e}^{\prime \prime} \Downarrow \boldsymbol{c}^{\prime}$
where $e^{\prime \prime}$ is e^{\prime} with $e * 2$ replaced with $e+e$

Program Example: Nested Strength Reduction

Theorem: If e^{\prime} has a subexpression of the form $e * 2$,
then $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}^{\prime}$ if and only if $\boldsymbol{H} ; \boldsymbol{e}^{\prime \prime} \Downarrow c^{\prime}$
where $e^{\prime \prime}$ is e^{\prime} with $e * 2$ replaced with $e+e$
First some useful metanotation:

$$
C::=[\cdot]|C+e| e+C|C * e| e * C
$$

$C[e]$ is " C with e in the hole" (inductive definition of "stapling")
Crisper statement of theorem:

$$
\boldsymbol{H} ; \boldsymbol{C}[e * 2] \Downarrow c^{\prime} \text { if and only if } \boldsymbol{H} ; \boldsymbol{C}[e+e] \Downarrow c^{\prime}
$$

Program Example: Nested Strength Reduction

Theorem: If e^{\prime} has a subexpression of the form $e * 2$,
then $\boldsymbol{H} ; e^{\prime} \Downarrow c^{\prime}$ if and only if $\boldsymbol{H} ; e^{\prime \prime} \Downarrow c^{\prime}$ where $e^{\prime \prime}$ is e^{\prime} with $e * 2$ replaced with $e+e$

First some useful metanotation:

$$
C::=[\cdot]|C+e| e+C|C * e| e * C
$$

$C[e]$ is " C with e in the hole" (inductive definition of "stapling")
Crisper statement of theorem:

$$
H ; C[e * 2] \Downarrow c^{\prime} \text { if and only if } \boldsymbol{H} ; C[e+e] \Downarrow c^{\prime}
$$

Proof sketch: By induction on structure ("syntax height") of C

- The base case ($C=[\cdot]$) follows from our previous proof
- The rest is a long, tedious, (and instructive!) induction

Proof reuse

As we cannot emphasize enough, proving is just like programming
The proof of nested strength reduction had nothing to do with $e * 2$ and $e+e$ except in the base case where we used our previous theorem

A much more useful theorem would parameterize over the base case so that we could get the "nested \boldsymbol{X} " theorem for any appropriate \boldsymbol{X} :

If ($\boldsymbol{H} ; \boldsymbol{e}_{1} \Downarrow c$ if and only if $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{2}} \Downarrow \boldsymbol{v}$), then $\left(\boldsymbol{H} ; \boldsymbol{C}\left[e_{1}\right] \Downarrow \boldsymbol{c}^{\prime}\right.$ if and only if $\left.\boldsymbol{H} ; \boldsymbol{C}\left[e_{2}\right] \Downarrow \boldsymbol{c}^{\prime}\right)$

The proof is identical except the base case is "by assumption"

Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,
(a) For all \boldsymbol{n}, if $\boldsymbol{H} ; \boldsymbol{s}_{\mathbf{1}} ;\left(s_{\mathbf{2}} ; \boldsymbol{s}_{\mathbf{3}}\right) \rightarrow^{\boldsymbol{n}} \boldsymbol{H}^{\prime}$; skip then there exist $\boldsymbol{H}^{\prime \prime}$ and \boldsymbol{n}^{\prime} such that $\boldsymbol{H} ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{\boldsymbol{n}^{\prime}} \boldsymbol{H}^{\prime \prime}$; skip and $H^{\prime \prime}(a n s)=H^{\prime}(a n s)$.
(b) If for all \boldsymbol{n} there exist \boldsymbol{H}^{\prime} and \boldsymbol{s}^{\prime} such that $\boldsymbol{H} ; s_{1} ;\left(s_{2} ; s_{3}\right) \rightarrow^{n} \boldsymbol{H}^{\prime} ; s^{\prime}$, then for all n there exist $\boldsymbol{H}^{\prime \prime}$ and $s^{\prime \prime}$ such that $\boldsymbol{H} ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n} \boldsymbol{H}^{\prime \prime} ; s^{\prime \prime}$.
(Proof needs a much stronger induction hypothesis.)
One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.

Language Equivalence Example

IMP w/o multiply large-step:

$$
\begin{array}{ll}
\text { CONST } & \text { VAR } \\
\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c} & \frac{\mathrm{ADD}}{\boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})} \quad \frac{\boldsymbol{H} ; \boldsymbol{e}_{1} \Downarrow \boldsymbol{c}_{1} \quad \boldsymbol{H} ; \boldsymbol{e}_{2} \Downarrow \boldsymbol{c}_{2}}{\boldsymbol{H} ; \boldsymbol{e}_{1}+e_{2} \Downarrow \boldsymbol{c}_{1}+\boldsymbol{c}_{2}}
\end{array}
$$

IMP w/o multiply small-step:

$$
\begin{array}{cc}
\frac{\text { SVAR }}{\boldsymbol{H} ; \boldsymbol{x} \rightarrow \boldsymbol{H}(\boldsymbol{x})} & \text { SADD } \\
\cline { 2 - 2 } \boldsymbol{H} \boldsymbol{H} \boldsymbol{c}_{1}+c_{2} \rightarrow c_{1}+c_{2} \\
\frac{\boldsymbol{H} ; \boldsymbol{e}_{1} \rightarrow e_{1}^{\prime}}{\boldsymbol{H} ; \boldsymbol{e}_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} & \frac{\text { SRIGHT }}{\boldsymbol{H} ; e_{1}+e_{2} \rightarrow e_{1}+e_{2}^{\prime}}
\end{array}
$$

Theorem: Semantics are equivalent: $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ if and only if $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} \boldsymbol{c}$
Proof: We prove the two directions separately...

Proof, part 1
First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$

Proof, part 1
First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} e^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{1}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $\boldsymbol{H} ; e+e_{2} \rightarrow^{n} e^{\prime}+e_{2}$.

- Proof by induction on \boldsymbol{n}
- Inductive case uses SLEFT and SRIGHT

Proof, part 1

First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{e}^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{1}+\boldsymbol{e} \rightarrow^{n} \boldsymbol{e}_{1}+\boldsymbol{e}^{\prime}$
and $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e}_{2} \rightarrow^{\boldsymbol{n}} \boldsymbol{e}^{\prime}+\boldsymbol{e}_{2}$.

- Proof by induction on \boldsymbol{n}
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$

Proof, part 1

First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{e}^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{1}+\boldsymbol{e} \rightarrow^{n} \boldsymbol{e}_{1}+\boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e}_{2} \rightarrow^{n} \boldsymbol{e}^{\prime}+\boldsymbol{e}_{2}$.

- Proof by induction on \boldsymbol{n}
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$

- CONST: Derivation with CONST implies $\boldsymbol{e}=\boldsymbol{c}$, and we can derive $\boldsymbol{H} ; \boldsymbol{c} \rightarrow{ }^{\mathbf{0}} \boldsymbol{c}$

Proof, part 1

First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} e^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e}_{2} \rightarrow^{n} e^{\prime}+e_{2}$.

- Proof by induction on \boldsymbol{n}
- Inductive case uses SLEFT and SRIght

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$

- CONST: Derivation with CONST implies $e=c$, and we can derive $\boldsymbol{H} ; \boldsymbol{c} \rightarrow^{0} \boldsymbol{c}$
- VAR: Derivation with var implies $e=x$ for some x where $\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{1} \boldsymbol{c}$ with SVAR

Proof, part 1
First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{e}^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}}+\boldsymbol{e} \rightarrow^{n} e_{1}+e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+e_{2} \rightarrow^{n} e^{\prime}+e_{2}$.

- Proof by induction on n
- Inductive case uses Sleft and SRight

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \boldsymbol{c}$

- CONST: Derivation with CONST implies $e=c$, and we can derive $\boldsymbol{H} ; \boldsymbol{c} \rightarrow^{0} \boldsymbol{c}$
- VAR: Derivation with VAR implies $\boldsymbol{e}=\boldsymbol{x}$ for some \boldsymbol{x} where $\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive $\boldsymbol{H} ; e \rightarrow^{1} c$ with SVAR
- ADD: ..

Part 1, continued

First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{e}^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{1}+\boldsymbol{e} \rightarrow^{n} \boldsymbol{e}_{1}+\boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e}_{2} \rightarrow^{\boldsymbol{n}} \boldsymbol{e}^{\prime}+\boldsymbol{e}_{2}$.

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$

- ...
- ADD: Derivation with ADD implies $e=e_{1}+e_{2}, c=c_{1}+c_{2}$, $H ; e_{1} \Downarrow c_{1}$, and $H ; e_{2} \Downarrow c_{2}$ for some $e_{1}, e_{2}, c_{1}, c_{2}$

Part 1, continued

First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{e}^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{1}+\boldsymbol{e} \rightarrow^{n} \boldsymbol{e}_{1}+\boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e}_{2} \rightarrow^{n} \boldsymbol{e}^{\prime}+\boldsymbol{e}_{2}$.

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ - ...

- ADD: Derivation with ADD implies $e=e_{1}+e_{2}, c=c_{1}+c_{2}$, $H ; e_{1} \Downarrow c_{1}$, and $\boldsymbol{H} ; e_{2} \Downarrow c_{2}$ for some $e_{1}, e_{2}, c_{1}, c_{2}$. By induction (twice), $\exists \boldsymbol{n}_{1}, \boldsymbol{n}_{2} . \boldsymbol{H} ; \boldsymbol{e}_{1} \rightarrow^{\boldsymbol{n}_{1}} \boldsymbol{c}_{1}$ and $H ; e_{2} \rightarrow^{n_{2}} c_{2}$.

Part 1, continued
First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow c$ and show $\exists n . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} c$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} e^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{1}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+e_{2} \rightarrow^{n} e^{\prime}+e_{2}$.

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ - ...

- ADD: Derivation with ADD implies $e=e_{1}+e_{2}, c=c_{1}+c_{2}$, $H ; e_{1} \Downarrow c_{1}$, and $\boldsymbol{H} ; e_{2} \Downarrow c_{2}$ for some $e_{1}, e_{2}, c_{1}, c_{2}$. By induction (twice), $\exists n_{1}, n_{2} . H ; e_{1} \rightarrow^{n_{1}} c_{1}$ and $H ; e_{2} \rightarrow^{n_{2}} c_{2}$.
So by our lemma $\boldsymbol{H} ; \boldsymbol{e}_{1}+\boldsymbol{e}_{2} \rightarrow^{n_{1}} c_{1}+e_{2}$ and $H ; c_{1}+e_{2} \rightarrow^{n_{2}} c_{1}+c_{2}$.

Part 1, continued
First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{e}^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{1}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+e_{2} \rightarrow^{n} e^{\prime}+e_{2}$.

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$

- ...
- ADD: Derivation with ADD implies $e=e_{1}+e_{2}, c=c_{1}+c_{2}$,
$H ; e_{1} \Downarrow c_{1}$, and $\boldsymbol{H} ; e_{2} \Downarrow c_{2}$ for some $e_{1}, e_{2}, c_{1}, c_{2}$.
By induction (twice), $\exists n_{1}, n_{2} . H ; e_{1} \rightarrow^{n_{1}} c_{1}$ and $H ; e_{2} \rightarrow^{n_{2}} c_{2}$.
So by our lemma $\boldsymbol{H} ; \boldsymbol{e}_{1}+e_{2} \rightarrow^{n_{1}} c_{1}+e_{2}$ and
$H ; c_{1}+e_{2} \rightarrow^{n_{2}} c_{1}+c_{2}$.
By SADD $\boldsymbol{H} ; \boldsymbol{c}_{1}+\boldsymbol{c}_{\mathbf{2}} \rightarrow \boldsymbol{c}_{\mathbf{1}}+\boldsymbol{c}_{\mathbf{2}}$.

Part 1, continued

First assume $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and show $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$
Lemma (prove it!): If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} e^{\prime}$, then $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}+\boldsymbol{e}_{2} \rightarrow^{n} e^{\prime}+e_{2}$.

Given the lemma, prove by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$

- ...
- ADD: Derivation with ADD implies $e=e_{1}+e_{2}, c=c_{1}+c_{2}$, $\boldsymbol{H} ; e_{1} \Downarrow c_{1}$, and $\boldsymbol{H} ; e_{2} \Downarrow c_{2}$ for some $e_{1}, e_{2}, c_{1}, c_{2}$. By induction (twice), $\exists \boldsymbol{n}_{1}, \boldsymbol{n}_{\mathbf{2}} . \boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}} \rightarrow^{n_{1}} \boldsymbol{c}_{1}$ and $H ; e_{2} \rightarrow^{n_{2}} c_{2}$.
So by our lemma $\boldsymbol{H} ; \boldsymbol{e}_{1}+e_{2} \rightarrow^{n_{1}} c_{1}+e_{2}$ and $H ; c_{1}+e_{2} \rightarrow^{n_{2}} c_{1}+c_{2}$.
By SADD $\boldsymbol{H} ; \boldsymbol{c}_{1}+\boldsymbol{c}_{2} \rightarrow \boldsymbol{c}_{1}+\boldsymbol{c}_{\mathbf{2}}$
So $H ; e_{1}+e_{2} \rightarrow^{n_{1}+n_{2}+1} c$.

Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$ and show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.

Proof, part 2
Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$ and show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Proof by induction on n :

Proof, part 2
Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$ and show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Proof by induction on n :

- $n=0: e$ is c and CONST lets us derive $\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}$

Proof, part 2
Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$ and show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Proof by induction on \boldsymbol{n} :

- $\boldsymbol{n}=0$: \boldsymbol{e} is \boldsymbol{c} and CONST lets us derive $\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}$
- $\boldsymbol{n}>\mathbf{0}$: (Clever: break into first step and remaining ones) $\exists e^{\prime} . H ; e \rightarrow e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \rightarrow^{n-1} c$.

Proof, part 2

Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$ and show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Proof by induction on \boldsymbol{n} :

- $\boldsymbol{n}=\mathbf{0}: \boldsymbol{e}$ is \boldsymbol{c} and CONST lets us derive $\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}$
- $\boldsymbol{n}>\mathbf{0}$: (Clever: break into first step and remaining ones)
$\exists e^{\prime} . H ; e \rightarrow e^{\prime}$ and $H ; e^{\prime} \rightarrow^{n-1} c$.
By induction $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$.

Proof, part 2
Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{n} \boldsymbol{c}$ and show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Proof by induction on n :

- $\boldsymbol{n}=\mathbf{0}: \boldsymbol{e}$ is \boldsymbol{c} and Const lets us derive $\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}$
- $\boldsymbol{n}>\mathbf{0}$: (Clever: break into first step and remaining ones)
$\exists e^{\prime} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow e^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \rightarrow^{n-1} c$.
By induction $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$.
So this lemma suffices: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.

Proof, part 2
Now assume $\exists \boldsymbol{n} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow^{\boldsymbol{n}} \boldsymbol{c}$ and show $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Proof by induction on n :

- $\boldsymbol{n}=\mathbf{0}: \boldsymbol{e}$ is \boldsymbol{c} and CONST lets us derive $\boldsymbol{H} ; \boldsymbol{c} \Downarrow \boldsymbol{c}$
- $\boldsymbol{n}>\mathbf{0}$: (Clever: break into first step and remaining ones)
$\exists e^{\prime} . \boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \rightarrow^{n-1} c$.
By induction $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$.
So this lemma suffices: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $H ; e \Downarrow c$.

Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: ...
- SADD: ..
- SLEFT: ...
- SRIGHT: ..

Part 2, key lemma

Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

Part 2, key lemma

Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: Derivation with SVAR implies \boldsymbol{e} is some \boldsymbol{x} and $\boldsymbol{e}^{\prime}=\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive, by $\operatorname{VAR}, \boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$.

Part 2, key lemma
Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: Derivation with SVAR implies \boldsymbol{e} is some \boldsymbol{x} and $\boldsymbol{e}^{\prime}=\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive, by $\operatorname{VAR}, \boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$.
- SADD: Derivation with SADD implies e is some $c_{1}+c_{2}$ and $e^{\prime}=c_{1}+c_{2}=c$, so derive, by ADD and two CONST, $H ; c_{1}+c_{2} \Downarrow c_{1}+c_{2}$.

Part 2, key lemma
Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: Derivation with SVAR implies \boldsymbol{e} is some \boldsymbol{x} and $e^{\prime}=\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive, by VAR, $\boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$.
- SADD: Derivation with SADD implies e is some $c_{1}+c_{2}$ and $e^{\prime}=c_{1}+c_{2}=c$, so derive, by ADD and two CONST, $H ; c_{1}+c_{2} \Downarrow c_{1}+c_{2}$.
- SLEFT: Derivation with SLEFT implies $e=e_{1}+e_{2}$ and $e^{\prime}=e_{1}^{\prime}+e_{2}$ and $\boldsymbol{H} ; e_{1} \rightarrow e_{1}^{\prime}$ for some $e_{1}, e_{2}, e_{1}^{\prime}$.

Part 2, key lemma

Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: Derivation with SVAR implies e is some \boldsymbol{x} and $e^{\prime}=\boldsymbol{H}(x)=c$, so derive, by VAR, $\boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$.
- SADD: Derivation with SADD implies e is some $c_{1}+c_{2}$ and $e^{\prime}=c_{1}+c_{2}=c$, so derive, by ADD and two CONST, $H ; c_{1}+c_{2} \Downarrow c_{1}+c_{2}$.
- SLEFT: Derivation with SLEFT implies $e=e_{1}+e_{2}$ and $e^{\prime}=e_{1}^{\prime}+e_{2}$ and $\boldsymbol{H} ; e_{1} \rightarrow e_{1}^{\prime}$ for some $e_{1}, e_{2}, e_{1}^{\prime}$. Since $e^{\prime}=e_{1}^{\prime}+e_{2}$ inverting assumption $\boldsymbol{H} ; e^{\prime} \Downarrow c$ gives $H ; e_{1}^{\prime} \Downarrow c_{1}, H ; e_{2} \Downarrow c_{2}$ and $c=c_{1}+c_{2}$.

Part 2, key lemma

Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: Derivation with SVAR implies e is some \boldsymbol{x} and $e^{\prime}=\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive, by $\operatorname{Var}, \boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$.
- SADD: Derivation with SADD implies e is some $\boldsymbol{c}_{1}+c_{2}$ and $e^{\prime}=c_{1}+c_{2}=c$, so derive, by ADD and two CONST, $H ; c_{1}+c_{2} \Downarrow c_{1}+c_{2}$.
- SLEFT: Derivation with SLEFT implies $e=e_{1}+e_{2}$ and $e^{\prime}=e_{1}^{\prime}+e_{2}$ and $\boldsymbol{H} ; e_{1} \rightarrow e_{1}^{\prime}$ for some $e_{1}, e_{2}, e_{1}^{\prime}$. Since $e^{\prime}=e_{1}^{\prime}+e_{2}$ inverting assumption $\boldsymbol{H} ; e^{\prime} \Downarrow c$ gives $H ; e_{1}^{\prime} \Downarrow c_{1}, H ; e_{2} \Downarrow c_{2}$ and $c=c_{1}+c_{2}$.
Applying the induction hypothesis to $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}} \rightarrow \boldsymbol{e}_{1}^{\prime}$ and $H ; e_{1}^{\prime} \Downarrow c_{1}$ gives $H ; e_{1} \Downarrow c_{1}$.

Part 2, key lemma
Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: Derivation with SVAR implies \boldsymbol{e} is some \boldsymbol{x} and $\boldsymbol{e}^{\prime}=\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive, by $\operatorname{VAR}, \boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$.
- SADD: Derivation with SADD implies e is some $c_{1}+c_{2}$ and $e^{\prime}=c_{1}+c_{2}=c$, so derive, by ADD and two CONST, $H ; c_{1}+c_{2} \Downarrow c_{1}+c_{2}$.
- SLEFT: Derivation with SLEFT implies $e=e_{1}+e_{2}$ and $e^{\prime}=e_{1}^{\prime}+e_{2}$ and $\boldsymbol{H} ; e_{1} \rightarrow e_{1}^{\prime}$ for some $e_{1}, e_{2}, e_{1}^{\prime}$. Since $e^{\prime}=e_{1}^{\prime}+e_{2}$ inverting assumption $\boldsymbol{H} ; e^{\prime} \Downarrow c$ gives $H ; e_{1}^{\prime} \Downarrow c_{1}, H ; e_{2} \Downarrow c_{2}$ and $c=c_{1}+c_{2}$.
Applying the induction hypothesis to $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}} \rightarrow \boldsymbol{e}_{1}^{\prime}$ and $H ; e_{1}^{\prime} \Downarrow c_{1}$ gives $H ; e_{1} \Downarrow c_{1}$.
So use add, $\boldsymbol{H} ; e_{1} \Downarrow c_{1}$, and $\boldsymbol{H} ; \boldsymbol{e}_{2} \Downarrow \boldsymbol{c}_{2}$ to derive $H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}$.

Part 2, key lemma

Lemma: If $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$ and $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow \boldsymbol{c}$, then $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
Prove the lemma by induction on derivation of $\boldsymbol{H} ; \boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$:

- SVAR: Derivation with SVAR implies \boldsymbol{e} is some \boldsymbol{x} and $e^{\prime}=\boldsymbol{H}(\boldsymbol{x})=\boldsymbol{c}$, so derive, by VAR, $\boldsymbol{H} ; \boldsymbol{x} \Downarrow \boldsymbol{H}(\boldsymbol{x})$.
- SADD: Derivation with SADD implies e is some $c_{1}+c_{2}$ and $e^{\prime}=c_{1}+c_{2}=c$, so derive, by ADD and two const, $H ; c_{1}+c_{2} \Downarrow c_{1}+c_{2}$.
- SLEFT: Derivation with SLEFT implies $e=e_{1}+e_{2}$ and $e^{\prime}=e_{1}^{\prime}+e_{2}$ and $\boldsymbol{H} ; e_{1} \rightarrow e_{1}^{\prime}$ for some $e_{1}, e_{2}, e_{1}^{\prime}$. Since $e^{\prime}=e_{1}^{\prime}+e_{2}$ inverting assumption $\boldsymbol{H} ; \boldsymbol{e}^{\prime} \Downarrow c$ gives $H ; e_{1}^{\prime} \Downarrow c_{1}, H ; e_{2} \Downarrow c_{2}$ and $c=c_{1}+c_{2}$.
Applying the induction hypothesis to $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{1}} \rightarrow \boldsymbol{e}_{\mathbf{1}}^{\prime}$ and $H ; e_{1}^{\prime} \Downarrow c_{1}$ gives $H ; e_{1} \Downarrow c_{1}$.
So use add, $\boldsymbol{H} ; e_{1} \Downarrow c_{1}$, and $\boldsymbol{H} ; \boldsymbol{e}_{\mathbf{2}} \Downarrow \boldsymbol{c}_{2}$ to derive $H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}$.
- SRIGHT: Analogous to SLEFT

The cool part, redux
Step through the SLEFT case more visually:
By assumption, we must have derivations that look like this:

$$
\frac{H ; e_{1} \rightarrow e_{1}^{\prime}}{H ; e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} \quad \frac{H ; e_{1}^{\prime} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}^{\prime}+e_{2} \Downarrow c_{1}+c_{2}}
$$

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get $\boldsymbol{H} ; \boldsymbol{e}_{1} \Downarrow \boldsymbol{c}_{1}$.

Now go grab the one hypothesis we haven't used yet and combine it with our inductive result to derive our answer:

$$
\frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}}
$$

A nice payoff
Theorem: The small-step semantics is deterministic:
if $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} c_{1}$ and $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} c_{2}$, then $c_{1}=c_{2}$
Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof

- Given $(((1+2)+(3+4))+(5+6))+(7+8)$ there are many execution sequences, which all produce 36 but with different intermediate expressions

A nice payoff

Theorem: The small-step semantics is deterministic: if $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} c_{1}$ and $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} c_{2}$, then $c_{1}=c_{2}$

A nice payoff

Theorem: The small-step semantics is deterministic:
if $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} c_{1}$ and $\boldsymbol{H} ; \boldsymbol{e} \rightarrow^{*} c_{2}$, then $c_{1}=c_{2}$
Not obvious (see SLEft and SRIGHT), nor do I know a direct proof

- Given $(((1+2)+(3+4))+(5+6))+(7+8)$ there are many execution sequences, which all produce 36 but with different intermediate expressions

Proof:

- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic semantics cannot be equivalent
- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right

Conclusions

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace while rule with

$$
\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { while } e s \rightarrow H ; \text { skip }} \quad \frac{H ; e \Downarrow c \quad c>0}{H ; \text { while } e s \rightarrow H ; s ; \text { while } e s}
$$

Conclusions

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace while rule with

$$
\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { while } e s \rightarrow \boldsymbol{H} ; \text { skip }}
$$

$$
\frac{H ; e \Downarrow c \quad c>0}{H ; \text { while } e s \rightarrow H ; s ; \text { while } e s}
$$

Equivalent to our original language

Conclusions

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace while rule with

$$
\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { while } e s \rightarrow H ; \operatorname{skip}} \quad \frac{H ; e \Downarrow c \quad c>0}{H ; \text { while } e s \rightarrow H ; s ; \text { while } e s}
$$

Equivalent to our original language
Change syntax of heap and replace ASSIGN and VAR rules with

$$
\overline{H ; x:=e \rightarrow H, x \mapsto e ; \text { skip }} \quad \frac{H ; H(x) \Downarrow c}{H ; x \Downarrow c}
$$

Conclusions

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace while rule with

$$
\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { while } e s \rightarrow H ; \text { skip }} \quad \frac{H ; e \Downarrow c \quad c>0}{H ; \text { while } e s \rightarrow H ; s ; \text { while } e s}
$$

Equivalent to our original language
Change syntax of heap and replace ASSIGN and VAR rules with

$$
\overline{H ; x:=e \rightarrow H, x \mapsto e ; \text { skip }} \quad \frac{H ; H(x) \Downarrow c}{H ; x \Downarrow c}
$$

NOT equivalent to our original language

