CSE-505: Programming Languages

Lecture 11 - STLC Extensions and Related Topics

Zach Tatlock 2016

Review

$$
\begin{aligned}
& e::=\lambda x . e|x| e e \mid c \quad \tau \quad::=\text { int } \mid \tau \rightarrow \tau \\
& v::=\lambda x . e \mid c \\
& \Gamma::=\cdot \mid \Gamma, x: \tau \\
& \overline{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}
\end{aligned}
$$

$e\left[e^{\prime} / x\right]$: capture-avoiding substitution of e^{\prime} for free x in e

$$
\begin{gathered}
\overline{\Gamma \vdash c: \operatorname{int}} \begin{array}{c}
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \\
\frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}
\end{array}
\end{gathered}
$$

Preservation: If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\cdot \vdash e^{\prime}: \tau$.
Progress: If $\cdot \vdash e: \tau$, then e is a value or $\exists e^{\prime}$ such that $e \rightarrow e^{\prime}$.

Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a principled methodology thanks to a proper education

- Extend the syntax
- Extend the operational semantics
- Derived forms (syntactic sugar), or
- Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Let bindings (CBV)

$$
\begin{aligned}
& \quad e::=\cdots \mid \text { let } x=e_{1} \text { in } e_{2} \\
& e_{1} \rightarrow e_{1}^{\prime}
\end{aligned}
$$

let $x=e_{1}$ in $e_{2} \rightarrow$ let $x=e_{1}^{\prime}$ in $e_{2} \quad$ let $x=v$ in $e \rightarrow e[v / x]$

$$
\frac{\Gamma \vdash e_{1}: \tau^{\prime} \quad \Gamma, x: \tau^{\prime} \vdash e_{2}: \tau}{\Gamma \vdash \text { let } x=e_{1} \text { in } e_{2}: \tau}
$$

(Also need to extend definition of substitution...)
Progress: If \boldsymbol{e} is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange

Derived forms

let seems just like $\boldsymbol{\lambda}$, so can make it a derived form

- let $x=e_{1}$ in e_{2} "a macro" / "desugars to" $\left(\lambda x . e_{2}\right) e_{1}$
- A "derived form"
(Harder if $\boldsymbol{\lambda}$ needs explicit type)
Or just define the semantics to replace let with $\boldsymbol{\lambda}$:

$$
\overline{\text { let } x=e_{1} \text { in } e_{2} \rightarrow\left(\lambda x . e_{2}\right) e_{1}}
$$

These 3 semantics are different in the state-sequence sense $\left(e_{1} \rightarrow e_{2} \rightarrow \ldots \rightarrow e_{n}\right)$

- But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and $\boldsymbol{\lambda}$ differently (later topic)
Note: Don't desugar early if it hurts error messages!

Booleans and Conditionals

$$
\begin{aligned}
e & ::= \\
v & ::= \\
\tau & ::= \\
& \cdots \mid \text { true } \mid \text { false } \mid \text { if } e_{1} e_{2} e_{3} \\
& \frac{e_{1} \rightarrow e_{1}^{\prime}}{} \\
& \text { if } e_{1} e_{2} e_{3} \rightarrow \text { if } e_{1}^{\prime} e_{2} e_{3}
\end{aligned}
$$

$$
\overline{\text { if true } e_{2} e_{3} \rightarrow e_{2}}
$$

$$
\text { if false } e_{2} e_{3} \rightarrow e_{3}
$$

$$
\Gamma \vdash e_{1}: \text { bool } \quad \Gamma \vdash e_{2}: \tau \quad \Gamma \vdash e_{3}: \tau
$$

$$
\Gamma \vdash \text { if } e_{1} e_{2} e_{3}: \tau
$$

$\bar{\Gamma} \vdash$ true : bool
$\Gamma \vdash$ false : bool
Also extend definition of substitution (will stop writing that)... Notes: CBN, new Canonical Forms case, all lemma cases easy

Pairs (CBV, left-right)

$$
\begin{aligned}
& e \quad::=\cdots|(e, e)| e .1 \mid e .2 \\
& v::=\cdots \mid(v, v) \\
& \tau \quad::=\cdots \mid \tau * \tau \\
& \frac{e_{1} \rightarrow e_{1}^{\prime}}{\left(e_{1}, e_{2}\right) \rightarrow\left(e_{1}^{\prime}, e_{2}\right)} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{\left(v_{1}, e_{2}\right) \rightarrow\left(v_{1}, e_{2}^{\prime}\right)} \\
& \frac{e \rightarrow e^{\prime}}{e .1 \rightarrow e^{\prime} .1} \\
& \frac{e \rightarrow e^{\prime}}{e .2 \rightarrow e^{\prime} .2} \\
& \overline{\left(v_{1}, v_{2}\right) .1 \rightarrow v_{1}} \\
& \overline{\left(v_{1}, v_{2}\right) .2 \rightarrow v_{2}}
\end{aligned}
$$

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)

Pairs continued

$$
\begin{array}{cc}
\frac{\Gamma \vdash e_{1}: \tau_{1}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash e .1: \tau_{1}} & \frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash e .2: \tau_{2}}
\end{array}
$$

Canonical Forms: If $\cdot \vdash \boldsymbol{v}: \boldsymbol{\tau}_{\mathbf{1}} * \boldsymbol{\tau}_{\mathbf{2}}$, then \boldsymbol{v} has the form $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{\mathbf{2}}\right)$
Progress: New cases using Canonical Forms are $\boldsymbol{v} .1$ and $\boldsymbol{v} .2$
Preservation: For primitive reductions, inversion gives the result directly

Records

Records are like \boldsymbol{n}-ary tuples except with named fields

- Field names are not variables; they do not α-convert

$e \quad::=\cdots \mid\left\{l_{1}=e_{1} ; \ldots ; l_{n}=e_{n}\right\}$	
$v \quad::=\cdots \mid\left\{l_{1}=v_{1} ; \ldots ; l_{n}=v_{n}\right\}$	
$\tau:$	$:=\cdots \mid\left\{l_{1}: \tau_{1} ; \ldots ; l_{n}: \tau_{n}\right\}$
	$e_{i} \rightarrow e_{i}^{\prime}$
$\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}, \ldots, l_{n}=e_{n}\right\}$ $\rightarrow\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}^{\prime}, \ldots, l_{n}=e_{n}\right\}$	$e \rightarrow e^{\prime}$
$e . l \rightarrow e^{\prime} . l$	

$$
\frac{1 \leq i \leq n}{\left\{l_{1}=v_{1}, \ldots, l_{n}=v_{n}\right\} . l_{i} \rightarrow v_{i}}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \ldots \quad \Gamma \vdash e_{n}: \tau_{n} \quad \text { labels distinct }}{\Gamma \vdash\left\{l_{1}=e_{1}, \ldots, l_{n}=e_{n}\right\}:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\}} \\
\frac{\Gamma \vdash e:\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\} \quad 1 \leq i \leq n}{\Gamma \vdash e . l_{i}: \tau_{i}}
\end{gathered}
$$

Records continued

Should we be allowed to reorder fields?
$\bullet \cdot \vdash\left\{l_{1}=42 ; l_{2}=\right.$ true $\}:\left\{l_{2}:\right.$ bool $; l_{1}:$ int $\} ? ?$

- Really a question about, "when are two types equal?"

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

- Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Sums

What about ML-style datatypes:

$$
\text { type } t=A \mid B \text { of int } \mid C \text { of int } * t
$$

1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., type 'a mylist = ...)
4. Named types

For now, just model (1) with (anonymous) sum types

- (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss informally

Sums syntax and overview

$$
\begin{aligned}
e & ::=\cdots|\mathbf{A}(e)| \mathrm{B}(e) \mid \text { match } e \text { with } \mathrm{A} x . e \mid \mathrm{B} x . e \\
v & ::=\cdots|\mathbf{A}(v)| \mathbf{B}(v) \\
\tau & ::=\cdots \mid \tau_{1}+\tau_{2}
\end{aligned}
$$

- Only two constructors: A and B
- All values of any sum type built from these constructors
- So $\mathbf{A}(e)$ can have any sum type allowed by e 's type
- No need to declare sum types in advance
- Like functions, will "guess the type" in our rules

Sums operational semantics

$\overline{\text { match } \mathrm{A}(v) \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow e_{1}[v / x]}$
$\overline{\text { match } \mathrm{B}(v) \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow e_{2}[v / y]}$

$$
\begin{gathered}
\frac{e \rightarrow e^{\prime}}{\mathrm{A}(e) \rightarrow \mathrm{A}\left(e^{\prime}\right)} \quad \frac{e \rightarrow e^{\prime}}{\mathrm{B}(e) \rightarrow \mathrm{B}\left(e^{\prime}\right)} \\
e \rightarrow e^{\prime}
\end{gathered}
$$

$\overline{\text { match } e \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow \text { match } e^{\prime} \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2}}$
match has binding occurrences, just like pattern-matching
(Definition of substitution must avoid capture, just like functions)

What is going on

Feel free to think about tagged values in your head:

- A tagged value is a pair of:
- A tag \mathbf{A} or \mathbf{B} (or 0 or 1 if you prefer)
- The (underlying) value
- A match:
- Checks the tag
- Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

$$
\begin{gathered}
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \mathrm{~A}(e): \tau_{1}+\tau_{2}} \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{~B}(e): \tau_{1}+\tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{1}: \tau \quad \Gamma, y: \tau_{2} \vdash e_{2}: \tau}{\Gamma \vdash \text { match } e \text { with Ax. } e_{1} \mid \mathrm{B} y . e_{2}: \tau}
\end{gathered}
$$

Key ideas:

- For constructor-uses, "other side can be anything"
- For match, both sides need same type
- Don't know which branch will be taken, just like an if.
- In fact, can drop explicit booleans and encode with sums: E.g., bool $=$ int + int, true $=A(0)$, false $=B(0)$

Sums Type Safety

Canonical Forms: If $\cdot \vdash \boldsymbol{v}: \boldsymbol{\tau}_{\mathbf{1}}+\boldsymbol{\tau}_{\mathbf{2}}$, then there exists a $\boldsymbol{v}_{\mathbf{1}}$ such that either \boldsymbol{v} is $\mathbf{A}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and $\cdot \vdash \boldsymbol{v}_{\mathbf{1}}: \boldsymbol{\tau}_{\mathbf{1}}$ or \boldsymbol{v} is $\mathbf{B}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and
$\cdot \vdash v_{1}: \tau_{2}$

- Progress for match v with $\mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2}$ follows, as usual, from Canonical Forms
- Preservation for match v with $\mathbf{A x} . e_{1} \mid \mathrm{B} y . \boldsymbol{e}_{\mathbf{2}}$ follows from the type of the underlying value and the Substitution Lemma
- The Substitution Lemma has new "hard" cases because we have new binding occurrences
- But that's all there is to it (plus lots of induction)

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: "this or that not both"
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
- A primitive in one language is an idiom in another

Sums in C

```
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...
```

One way in C :

```
struct t {
    enum {A, B, C} tag;
    union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...
```

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
- Mutation costs us again!

Sums in Java

```
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...
```

One way in Java (t 4 is the match-expression's type):

```
abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
```

... e.m() ...

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)

Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace int + (int \rightarrow int) with int $*($ int $*($ int \rightarrow int $))$

Pairs and sums are "logical duals" (more on that later)

- To make a $\tau_{1} * \tau_{2}$ you need a τ_{1} and a τ_{2}
- To make a $\tau_{1}+\tau_{2}$ you need a τ_{1} or a τ_{2}
- Given a $\tau_{1} * \tau_{2}$, you can get a τ_{1} or a τ_{2} (or both; your "choice")
- Given a $\tau_{1}+\tau_{2}$, you must be prepared for either a $\boldsymbol{\tau}_{\mathbf{1}}$ or $\boldsymbol{\tau}_{\mathbf{2}}$ (the value's "choice")

Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...
Parameterize our language/semantics by a collection of base types $\left(b_{1}, \ldots, b_{n}\right)$ and primitives $\left(\boldsymbol{p}_{1}: \tau_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}: \boldsymbol{\tau}_{\boldsymbol{n}}\right)$. Examples:

- concat : string \rightarrow string \rightarrow string
- tolnt: float \rightarrow int
- "hello" : string

For each primitive, assume if applied to values of the right types it produces a value of the right type

Together the types and assumed steps tell us how to type-check and evaluate $\boldsymbol{p}_{\boldsymbol{i}} \boldsymbol{v}_{\mathbf{1}} \ldots \boldsymbol{v}_{\boldsymbol{n}}$ where $\boldsymbol{p}_{\boldsymbol{i}}$ is a primitive

We can prove soundness once and for all given the assumptions

Recursion

We won't prove it, but every extension so far preserves termination
A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won't type-check, nor will any encoding of equal expressive power

- So instead add an explicit construct for recursion
- You might be thinking let rec $\boldsymbol{f} \boldsymbol{x}=\boldsymbol{e}$, but we will do something more concise and general but less intuitive

Recursion

We won't prove it, but every extension so far preserves termination
A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won't type-check, nor will any encoding of equal expressive power

- So instead add an explicit construct for recursion
- You might be thinking let rec $\boldsymbol{f} \boldsymbol{x}=\boldsymbol{e}$, but we will do something more concise and general but less intuitive

$$
\begin{gathered}
e::=\cdots \mid \text { fix } e \\
\frac{e \rightarrow e^{\prime}}{\mathrm{fix} e \rightarrow \mathrm{fix} e^{\prime}} \quad \overline{\mathrm{fix} \lambda x . e \rightarrow e[\mathrm{fix} \lambda x . e / x]}
\end{gathered}
$$

No new values and no new types

Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

$$
(\text { fix } \lambda f . \lambda n . \text { if }(n<1) 1(n *(f(n-1)))) 5
$$

Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:
$($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1)))) 5$
\rightarrow
$(\lambda n$. if $(n<1) 1(n *(($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(n-1)))) 5$

Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:
$($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1)))) 5$
\rightarrow
$(\lambda n$. if $(n<1) 1(n *(($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(n-1)))) 5$
\rightarrow
if $(5<1) 1(5 *((f i x \lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(5-1))$

Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:
$($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1)))) 5$
\rightarrow
$(\lambda n$. if $(n<1) 1(n *(($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(n-1)))) 5$
\rightarrow
if $(5<1) 1(5 *((f i x \lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(5-1))$
$\rightarrow{ }^{2}$
$5 *(($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(5-1))$

Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:
$($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1)))) 5$
\rightarrow
$(\lambda n$. if $(n<1) 1(n *(($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(n-1)))) 5$
\rightarrow
if $(5<1) 1(5 *((f i x \lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(5-1))$
$\rightarrow{ }^{2}$
$5 *(($ fix $\lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(5-1))$
$\rightarrow{ }^{2}$
$5 *((\lambda n$. if $(n<1) 1(n *((f i x \lambda f . \lambda n$. if $(n<1) 1(n *(f(n-1))))(n-1))))$

Why called fix?

In math, a fix-point of a function \boldsymbol{g} is an \boldsymbol{x} such that $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}$

- This makes sense only if \boldsymbol{g} has type $\boldsymbol{\tau} \rightarrow \boldsymbol{\tau}$ for some $\boldsymbol{\tau}$
- A particular \boldsymbol{g} could have have $0,1,39$, or infinity fix-points
- Examples for functions of type int \rightarrow int:
- $\lambda \boldsymbol{x} . \boldsymbol{x}+1$ has no fix-points
- $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{x} * 0$ has one fix-point
- $\boldsymbol{\lambda} \boldsymbol{x}$. absolute_value (x) has an infinite number of fix-points
- λx. if $(x<10 \& \& x>0) x 0$ has 10 fix-points

Higher types

At higher types like (int \rightarrow int) \rightarrow (int \rightarrow int), the notion of fix-point is exactly the same (but harder to think about)

- For what inputs f of type int \rightarrow int is $g(f)=f$

Examples:

- $\lambda f . \lambda x .(f x)+1$ has no fix-points
- $\boldsymbol{\lambda} f . \lambda \boldsymbol{x} .(f x) * 0$ (or just $\lambda f . \lambda \boldsymbol{x} .0$) has 1 fix-point
- The function that always returns 0
- In math, there is exactly one such function (cf. equivalence)
- $\boldsymbol{\lambda} \boldsymbol{f} . \boldsymbol{\lambda} \boldsymbol{x}$. absolute_value $(\boldsymbol{f} \boldsymbol{x})$ has an infinite number of fix-points: Any function that never returns a negative result

Back to factorial

Now, what are the fix-points of
$\lambda f . \lambda x$. if $(x<1) 1(x *(f(x-1))) ?$
It turns out there is exactly one (in math): the factorial function!
And fix $\lambda f . \lambda x$. if $(x<1) 1(x *(f(x-1)))$ behaves just like the factorial function

- That is, it behaves just like the fix-point of $\lambda f . \lambda x$. if $(x<1) 1(x *(f(x-1)))$
- In general, fix takes a function-taking-function and returns its fix-point
(This isn't necessarily important, but it explains the terminology and shows that programming is deeply connected to mathematics)

Typing fix

$$
\frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash \mathrm{fix} e: \tau}
$$

Math explanation: If e is a function from τ to τ, then fix e, the fixed-point of e, is some τ with the fixed-point property

- So it's something with type $\boldsymbol{\tau}$

Operational explanation: fix $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}^{\prime}$ becomes $\boldsymbol{e}^{\prime}\left[\mathrm{fix} \boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}^{\prime} / \boldsymbol{x}\right]$

- The substitution means \boldsymbol{x} and fix $\boldsymbol{\lambda} \boldsymbol{x}$. e^{\prime} need the same type
- The result means \boldsymbol{e}^{\prime} and fix $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}^{\prime}$ need the same type

Note: The $\boldsymbol{\tau}$ in the typing rule is usually insantiated with a function type

- e.g., $\tau_{1} \rightarrow \tau_{2}$, so e has type $\left(\tau_{1} \rightarrow \tau_{2}\right) \rightarrow\left(\tau_{1} \rightarrow \tau_{2}\right)$

Note: Proving soundness is straightforward!

General approach

We added let, booleans, pairs, records, sums, and fix

- let was syntactic sugar
- fix made us Turing-complete by "baking in" self-application
- The others added types

Whenever we add a new form of type $\boldsymbol{\tau}$ there are:

- Introduction forms (ways to make values of type $\boldsymbol{\tau}$)
- Elimination forms (ways to use values of type $\boldsymbol{\tau}$)

What are these forms for functions? Pairs? Sums?

When you add a new type, think "what are the intro and elim forms"?

Anonymity

We added many forms of types, all unnamed a.k.a. structural. Many real PLs have (all or mostly) named types:

- Java, C, C++: all record types (or similar) have names
- Omitting them just means compiler makes up a name
- OCaml sum types and record types have names

A never-ending debate:

- Structual types allow more code reuse: good
- Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Termination

Surprising fact: If $\cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$ in STLC with all our additions except fix, then there exists a \boldsymbol{v} such that $\boldsymbol{e} \rightarrow^{*} \boldsymbol{v}$

- That is, all programs terminate

So termination is trivially decidable (the constant "yes" function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

- Could present it in about an hour if desired

Non-proof:

- Recursion in $\boldsymbol{\lambda}$ calculus requires some sort of self-application
- Easy fact: For all $\boldsymbol{\Gamma}, \boldsymbol{x}$, and $\boldsymbol{\tau}$, we cannot derive $\boldsymbol{\Gamma} \vdash \boldsymbol{x} \boldsymbol{x}: \boldsymbol{\tau}$

