
CSE-505: Programming Languages

Lecture 14 — Efficient Lambda Interpreters

Zach Tatlock
2016

Where are we

Done:

I Formal definition of evaluation contexts and first-class
continuations

I Continuation-passing style as a programming idiom

I The CPS transform

Now:
I Implement an efficent lambda-calculus interpreter using little

more than malloc and a single while-loop
I Explicit evaluation contexts (i.e., continuations) is essential
I Key novelty is maintaining the current context incrementally
I letcc and throw can be O(1) operations (homework problem)

Zach Tatlock CSE-505 2016, Lecture 14 2

See the code

See lec14code.ml for four interpreters where each is:

I More efficient than the previous one and relies on less from
the meta-language

I Close enough to the previous one that equivalence among
them is tractable to prove

The interpreters:

1. Plain-old small-step with substitution

2. Evaluation contexts, re-decomposing at each step

3. Incremental decomposition, made efficient by representing
evaluation contexts (i.e., continuations) as a linked list with
“shallow end” of the stack at the beginning of the list

4. Replacing substitution with environments

The last interpreter is trivial to port to assembly or C

Zach Tatlock CSE-505 2016, Lecture 14 3

Example

Small-step (first interpreter):

Decomposition (second interpreter):

Zach Tatlock CSE-505 2016, Lecture 14 4



Example

Decomposition (second interpreter):

Decomposition rewritten with linked list (hole implicit at front):

Zach Tatlock CSE-505 2016, Lecture 14 5

Example

Decomposition rewritten with linked list (hole implicit at front):

Some loop iterations of third interpreter:

Fourth interpreter: replace substitution with environment/closures
Zach Tatlock CSE-505 2016, Lecture 14 6

The end result

The last interpreter needs just:

I A loop

I Lists for contexts and environments

I Tag tests

Moreover:

I Function calls execute in O(1) time
I Variable look-ups don’t, but that’s fixable

I (e.g., de Bruijn indices and arrays for environments)

I Other operations, including pairs, conditionals, letcc, and
throw also all work in O(1) time

I Need new kinds of contexts and values
I Left as a homework exercise as a way to understand the code

Making evaluation contexts explicit data structures was key

Zach Tatlock CSE-505 2016, Lecture 14 7


