CSE-505: Programming Languages

Lecture 20.5 — Recursive Types

Zach Tatlock 2016

Recursive Types

We could add list types (list(τ)) and primitives ([], ::, match), but we want user-defined recursive types

Intuition:

type intlist = Empty | Cons int * intlist

Which is roughly:

type intlist = unit + (int * intlist)

- ► Seems like a named type is unavoidable
 - ▶ But that's what we thought with let rec and we used fix
- Analogously to **fix** $\lambda x.$ e, we'll introduce $\mu \alpha. \tau$
 - **Each** α "stands for" entire $\mu \alpha . \tau$

Where are we

- ▶ System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation
- ► This lecture: Recursive Types (different use of type variables)
 - ► For building unbounded data structures
 - ► Turing-completeness without a fix primitive

Zach Tatlock

CSE-505 2016, Lecture 20.5

Mighty μ

In τ , type variable α stands for $\mu\alpha.\tau$, bound by μ

Examples (of many possible encodings):

- int list (finite or infinite): $\mu\alpha$.unit + (int * α)
- int list (infinite "stream"): $\mu\alpha$.int * α
 - ▶ Need laziness (thunking) or mutation to build such a thing
 - ▶ Under CBV, can build values of type $\mu\alpha$.unit \rightarrow (int * α)
- int list list: $\mu\alpha$.unit + $((\mu\beta$.unit + $(int * \beta)) * \alpha)$

Examples where type variables appear multiple times:

- int tree (data at nodes): $\mu\alpha$.unit + (int * α * α)
- int tree (data at leaves): $\mu\alpha$.int + $(\alpha * \alpha)$

Zach Tatlock CSE-505 2016, Lecture 20.5 3 Zach Tatlock CSE-505 2016, Lecture 20.5

Using μ types

How do we build and use int lists $(\mu \alpha.\mathbf{unit} + (\mathbf{int} * \alpha))$?

We would like:

Zach Tatlock

Using μ types

Zach Tatlock

How do we build and use int lists $(\mu \alpha.\mathbf{unit} + (\mathbf{int} * \alpha))$?

We would like:

- empty list = $\mathbf{A}(())$ Has type: $\mu\alpha$.unit + (int * α)
- ho cons = λx :int. λy : $(\mu \alpha.$ unit + (int * lpha)). $\mathsf{B}((x,y))$ Has type:

$$\mathsf{int} \to (\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha)) \to (\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha))$$

CSE-505 2016, Lecture 20.5

Using μ types

How do we build and use int lists ($\mu\alpha$.unit + (int * α))?

We would like:

• empty list = A(())Has type: $\mu\alpha.unit + (int * \alpha)$

Using μ types

How do we build and use int lists ($\mu\alpha$.unit + (int * α))?

We would like:

- empty list = $\mathbf{A}(())$ Has type: $\mu \alpha . \mathbf{unit} + (\mathbf{int} * \alpha)$
- ho cons = λx :int. λy :($\mu \alpha$.unit + (int * α)). B((x,y))

 Has type:

 $\mathsf{int} \to (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)) \to (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha))$ bead =

CSE-505 2016, Lecture 20.5

 $\lambda x : (\mu \alpha. \mathsf{unit} + (\mathsf{int} * \alpha)). \; \mathsf{match} \; x \; \mathsf{with} \; \mathsf{A}_{-}. \; \mathsf{A}(()) \mid \mathsf{B}y. \; \mathsf{B}(y.1)$ Has type: $(\mu \alpha. \mathsf{unit} + (\mathsf{int} * \alpha)) \to (\mathsf{unit} + \mathsf{int})$

Zach Tatlock CSE-505 2016, Lecture 20.5 5 Zach Tatlock CSE-505 2016, Lecture 20.5

Using μ types

How do we build and use int lists $(\mu \alpha.\mathbf{unit} + (\mathbf{int} * \alpha))$?

We would like:

- empty list = $\mathbf{A}(())$ Has type: $\mu \alpha . \mathbf{unit} + (\mathbf{int} * \alpha)$
- ho cons = λx :int. λy :($\mu \alpha$.unit + (int * α)). B((x,y)) Has type:

$$\mathsf{int} \to (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)) \to (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha))$$

► head =

 $\lambda x:(\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha)).\mathsf{match}\;x\;\mathsf{with}\;\mathsf{A}_{-}.\;\mathsf{A}(())\mid\mathsf{B}y.\;\mathsf{B}(y.1)$ Has type: $(\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha))\to (\mathsf{unit}+\mathsf{int})$

► tail =

 λx :($\mu \alpha$.unit + (int * α)). match x with A $_-$. A(()) | By. B(y.2) Has type:

$$(\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha)) \to (\mathsf{unit} + \mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha))$$

Using μ types

How do we build and use int lists ($\mu\alpha$.unit + (int * α))?

We would like:

- empty list = $\mathbf{A}(())$ Has type: $\mu \alpha . \mathbf{unit} + (\mathbf{int} * \alpha)$
- ho cons = λx :int. λy : $(\mu \alpha.$ unit + (int * lpha)). $\mathsf{B}((x,y))$ Has type:

$$\mathsf{int} \to (\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha)) \to (\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha))$$

- ▶ head = λx :($\mu \alpha$.unit + (int * α)). match x with A₋. A(()) | By. B(y.1) Has type: ($\mu \alpha$.unit + (int * α)) \rightarrow (unit + int)
- ▶ tail = λx :($\mu \alpha$.unit + (int * α)). match x with A₋. A(()) | By. B(y.2) Has type: $(\mu \alpha$.unit + (int * α)) \rightarrow (unit + $\mu \alpha$.unit + (int * α))

But our typing rules allow none of this (yet)

Zach Tatlock

CSE-505 2016, Lecture 20.5

Zach Tatlock

CSE-505 2016, Lecture 20.

Using μ types (continued)

For empty list = A(()), one typing rule applies:

$$rac{\Delta; \Gamma dash e : au_1 \qquad \Delta dash au_2}{\Delta; \Gamma dash \mathsf{A}(e) : au_1 + au_2}$$

So we could show

$$\Delta$$
; $\Gamma \vdash A(())$: unit $+$ (int $*$ ($\mu\alpha$.unit $+$ (int $*$ α))) (since $FTV($ int $*$ $\mu\alpha$.unit $+$ (int $*$ α)) $= \emptyset \subset \Delta$)

Using μ types (continued)

For empty list = A(()), one typing rule applies:

$$rac{\Delta; \Gamma dash e : au_1 \qquad \Delta dash au_2}{\Delta; \Gamma dash \mathsf{A}(e) : au_1 + au_2}$$

So we could show

$$\Delta$$
; $\Gamma \vdash A(())$: unit $+$ (int $*$ ($\mu\alpha$.unit $+$ (int $*$ α))) (since FTV (int $*$ $\mu\alpha$.unit $+$ (int $*$ α)) $= \emptyset \subseteq \Delta$)

But we want $\mu \alpha.$ unit + (int $* \alpha$)

Zach Tatlock CSE-505 2016, Lecture 20.5 6 Zach Tatlock CSE-505 2016, Lecture 20.5

Using μ types (continued)

For empty list $= \mathbf{A}(())$, one typing rule applies:

$$\frac{\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2}{\Delta; \Gamma \vdash \mathsf{A}(e) : \tau_1 + \tau_2}$$

So we could show

$$\Delta$$
; $\Gamma \vdash A(())$: unit $+$ (int $*$ ($\mu\alpha$.unit $+$ (int $*$ α))) (since FTV (int $*$ $\mu\alpha$.unit $+$ (int $*$ α)) $= \emptyset \subset \Delta$)

But we want $\mu\alpha$.unit + (int * α)

Notice:
$$\operatorname{unit} + (\operatorname{int} * (\mu \alpha.\operatorname{unit} + (\operatorname{int} * \alpha)))$$
 is $(\operatorname{unit} + (\operatorname{int} * \alpha))[(\mu \alpha.\operatorname{unit} + (\operatorname{int} * \alpha))/\alpha]$

Using μ types (continued)

For empty list = A(()), one typing rule applies:

$$rac{\Delta;\Gammadash e: au_1}{\Delta;\Gammadash \mathsf{A}(e): au_1+ au_2}$$

So we could show

$$\Delta$$
; $\Gamma \vdash A(())$: unit $+$ (int $*$ ($\mu\alpha$.unit $+$ (int $*$ α))) (since FTV (int $*$ $\mu\alpha$.unit $+$ (int $*$ α)) $= \emptyset \subseteq \Delta$)

But we want $\mu\alpha$.unit + (int * α)

Notice:
$$\operatorname{unit} + (\operatorname{int} * (\mu \alpha.\operatorname{unit} + (\operatorname{int} * \alpha)))$$
 is $(\operatorname{unit} + (\operatorname{int} * \alpha))[(\mu \alpha.\operatorname{unit} + (\operatorname{int} * \alpha))/\alpha]$

The key: Subsumption — recursive types are equal to their "unrolling"

Zach Tatlock

CSE-505 2016, Lecture 20.5

Zach Tatlock

CSE-505 2016, Lecture 20.5

Return of subtyping

Can use subsumption and these subtyping rules:

ROLL UNROLL
$$\frac{\tau[(\mu\alpha.\tau)/\alpha] < \mu\alpha.\tau}{\tau[(\mu\alpha.\tau)/\alpha]}$$

Subtyping can "roll" or "unroll" a recursive type

Can now give empty-list, cons, and head the types we want: Constructors use roll, destructors use unroll

Notice how little we did: One new form of type $(\mu\alpha.\tau)$ and two new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)

Metatheory

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

- ► Erasure (no run-time effect): unchanged
- ► Termination: changed!
 - $(\lambda x : \mu \alpha . \alpha \to \alpha . \ x \ x)(\lambda x : \mu \alpha . \alpha \to \alpha . \ x \ x)$
 - ► In fact, we're now Turing-complete without fix (actually, can type-check every closed λ term)
- ► Safety: still safe, but Canonical Forms harder
- Inference: Shockingly efficient for "STLC plus μ"
 (A great contribution of PL theory with applications in OO and XML-processing languages)

Zach Tatlock CSE-505 2016, Lecture 20.5 7 Zach Tatlock CSE-505 2016, Lecture 20.5

Syntax-directed μ types

Recursive types via subsumption "seems magical"

Instead, we can make programmers tell the type-checker where/how to roll and unroll

"Iso-recursive" types: remove subtyping and add expressions:

Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- ▶ Implicit typing can be impossible, difficult, or confusing
- ► Explicit coercions can be annoying and clutter language with no-ops
- ▶ Most languages do some of each

Anything is decidable if you make the code producer give the implementation enough "hints" about the "proof"

Zach Tatlock

CSE-505 2016, Lecture 20.5

Zach Tatlock

CSE-505 2016, Lecture 20.5

ML datatypes revealed

How is $\mu\alpha.\tau$ related to type t = Foo of int | Bar of int * t

Constructor use is a "sum-injection" followed by an implicit roll

- ▶ So Foo e is really $roll_t$. Foo(e)
- ▶ That is, Foo e has type t (the rolled type)

A pattern-match has an implicit unroll

ightharpoonup So match e with... is really match unroll e with...

This "trick" works because different recursive types use different tags - so the type-checker knows which type to roll to

Zach Tatlock

CSE-505 2016, Lecture 20.5

11