- System F gave us type abstraction
- code reuse
- strong abstractions
- different from real languages (like ML), but the right foundation
- This lecture: Recursive Types (different use of type variables)
- For building unbounded data structures
- Turing-completeness without a fix primitive

Zach Tatlock 2016

Recursive Types

We could add list types $(\operatorname{list}(\tau))$ and primitives ([], ::, match), but we want user-defined recursive types

Intuition:

$$
\text { type intlist }=\text { Empty | Cons int } * \text { intlist }
$$

Which is roughly:

```
type intlist = unit + (int * intlist)
```

- Seems like a named type is unavoidable
- But that's what we thought with let rec and we used fix
- Analogously to fix $\lambda \boldsymbol{x} . e$, we'll introduce $\mu \boldsymbol{\mu} . \tau$
- Each $\boldsymbol{\alpha}$ "stands for" entire $\boldsymbol{\mu} \boldsymbol{\alpha} . \boldsymbol{\tau}$

Using $\boldsymbol{\mu}$ types

How do we build and use int lists $(\mu \alpha$.unit $+($ int $* \alpha)$)?
We would like:

Using $\boldsymbol{\mu}$ types
How do we build and use int lists $(\mu \alpha$.unit $+($ int $* \alpha)$)?
We would like:

- empty list $=\mathbf{A}(())$

Has type: $\boldsymbol{\mu} \boldsymbol{\alpha}$.unit $+($ int $* \boldsymbol{\alpha})$

Using $\boldsymbol{\mu}$ types
How do we build and use int lists $(\boldsymbol{\mu} \boldsymbol{\alpha}$.unit $+(\operatorname{int} * \boldsymbol{\alpha})$)?
We would like:

- empty list $=\mathbf{A}(())$

Has type: $\mu \boldsymbol{\alpha}$. unit + (int $* \boldsymbol{\alpha}$)

- cons $=\lambda x$:int. $\lambda y:(\mu \alpha$. unit $+($ int $* \alpha)) . \mathrm{B}((x, y))$ Has type:
int $\rightarrow(\mu \alpha$.unit $+($ int $* \alpha)) \rightarrow(\mu \alpha$. unit $+($ int $* \alpha))$

Using μ types

How do we build and use int lists $(\mu \alpha$.unit $+($ int $* \alpha))$?
We would like:

- empty list $=\mathbf{A}(())$

Has type: $\mu \boldsymbol{\alpha}$.unit $+($ int $* \boldsymbol{\alpha})$

- cons $=\lambda x$:int. $\lambda y:(\mu \alpha$.unit $+($ int $* \alpha)) . \mathrm{B}((x, y))$ Has type:
int $\rightarrow(\mu \alpha$.unit $+($ int $* \alpha)) \rightarrow(\mu \alpha$. unit $+($ int $* \alpha))$
- head $=$
$\lambda x:(\mu \alpha$. unit $+($ int $* \alpha))$. match x with $\mathrm{A} . \mathrm{A}(()) \mid \mathrm{B} y . \mathrm{B}(y .1)$
Has type: $(\mu \boldsymbol{\alpha}$.unit $+($ int $* \alpha)) \rightarrow($ unit + int $)$

Using $\boldsymbol{\mu}$ types

How do we build and use int lists $(\mu \alpha$.unit $+($ int $* \alpha)$)?
We would like:

- empty list $=\mathbf{A}(())$

Has type: $\boldsymbol{\mu} \boldsymbol{\alpha}$.unit $+($ int $* \boldsymbol{\alpha})$

- cons $=\lambda x$:int. $\lambda y:(\mu \alpha$.unit $+($ int $* \alpha)) . \mathrm{B}((x, y))$ Has type:
int $\rightarrow(\mu \alpha$.unit $+($ int $* \alpha)) \rightarrow(\mu \alpha$. unit $+($ int $* \alpha))$
- head $=$
$\lambda x:(\mu \alpha$. unit $+($ int $* \alpha))$. match x with $\mathrm{A}_{-} \cdot \mathrm{A}(()) \mid \mathrm{B} y . \mathrm{B}(y .1)$ Has type: $(\mu \boldsymbol{\alpha}$.unit $+($ int $* \boldsymbol{\alpha})) \rightarrow($ unit + int $)$
- tail =
$\lambda x:(\mu \alpha$. unit $+($ int $* \alpha))$. match x with $\mathrm{A}_{-} . \mathrm{A}(()) \mid \mathrm{B} y . \mathrm{B}(y .2)$ Has type:
$(\mu \alpha$. unit $+($ int $* \alpha)) \rightarrow($ unit $+\mu \alpha$. unit $+($ int $* \alpha))$

Using $\boldsymbol{\mu}$ types
How do we build and use int lists ($\mu \alpha$.unit $+($ int $* \alpha)$)?
We would like:

- empty list $=\mathbf{A}(())$

Has type: $\mu \alpha$.unit $+($ int $* \alpha)$

- cons $=\lambda x$:int. $\lambda y:(\mu \alpha$.unit $+($ int $* \alpha)) . \mathrm{B}((x, y))$ Has type:
int $\rightarrow(\mu \alpha$.unit $+($ int $* \alpha)) \rightarrow(\mu \alpha$. unit $+($ int $* \alpha))$
- head $=$
$\lambda x:(\mu \alpha$. unit $+($ int $* \alpha))$. match x with $\mathrm{A} . \mathrm{A}(()) \mid \mathrm{B} y . \mathrm{B}(y .1)$
Has type: $(\boldsymbol{\mu} \boldsymbol{\alpha}$. unit $+($ int $* \boldsymbol{\alpha})) \rightarrow($ unit + int $)$
- tail $=$
$\lambda x:(\mu \alpha$. unit $+($ int $* \alpha))$. match x with $\mathrm{A}_{-} . \mathrm{A}(()) \mid \mathrm{B} y . \mathrm{B}(y .2)$ Has type:
$(\mu \alpha$.unit $+($ int $* \alpha)) \rightarrow($ unit $+\mu \alpha$.unit $+($ int $* \alpha))$
But our typing rules allow none of this (yet)

Using $\boldsymbol{\mu}$ types (continued)

For empty list $=\mathbf{A}(())$, one typing rule applies:

$$
\frac{\Delta ; \Gamma \vdash e: \tau_{1} \quad \Delta \vdash \tau_{2}}{\Delta ; \Gamma \vdash \mathbf{A}(e): \tau_{1}+\tau_{2}}
$$

So we could show
$\Delta ; \Gamma \vdash \mathrm{A}(()):$ unit $+($ int $*(\mu \alpha$. unit $+($ int $* \alpha)))$
$($ since $\boldsymbol{F T V}($ int $* \mu \alpha$. unit $+($ int $* \alpha))=\emptyset \subseteq \Delta)$
But we want $\mu \alpha$.unit $+($ int $* \alpha)$

Using $\boldsymbol{\mu}$ types (continued)

For empty list $=\mathbf{A}(())$, one typing rule applies:

$$
\frac{\Delta ; \Gamma \vdash e: \tau_{1} \quad \Delta \vdash \tau_{2}}{\Delta ; \Gamma \vdash \mathrm{A}(e): \tau_{1}+\tau_{2}}
$$

So we could show
$\Delta ; \Gamma \vdash \mathrm{A}(()):$ unit $+($ int $*(\mu \alpha$. unit $+($ int $* \alpha)))$
(since $\boldsymbol{F T V}($ int $* \mu \alpha$. unit $+($ int $* \alpha))=\emptyset \subseteq \Delta)$
But we want $\mu \alpha$.unit $+($ int $* \alpha)$
Notice: unit $+($ int $*(\mu \alpha$.unit $+($ int $* \alpha)))$ is
$($ unit $+($ int $* \alpha))[(\mu \alpha$.unit $+($ int $* \alpha)) / \alpha]$

Using $\boldsymbol{\mu}$ types (continued)

For empty list $=\mathbf{A}(())$, one typing rule applies:

$$
\frac{\Delta ; \Gamma \vdash e: \tau_{1} \quad \Delta \vdash \tau_{2}}{\Delta ; \Gamma \vdash \mathbf{A}(e): \tau_{1}+\tau_{2}}
$$

So we could show
$\Delta ; \Gamma \vdash \mathbf{A}(()):$ unit $+($ int $*(\mu \alpha$. unit $+($ int $* \alpha)))$
(since $\boldsymbol{F T V}($ int $* \mu \alpha$. unit $+($ int $* \alpha))=\emptyset \subseteq \Delta)$
But we want $\boldsymbol{\mu} \boldsymbol{\alpha}$.unit $+($ int $* \boldsymbol{\alpha})$
Notice: unit $+($ int $*(\mu \alpha$.unit $+($ int $* \alpha)))$ is
$($ unit $+($ int $* \alpha))[(\mu \alpha$.unit $+($ int $* \alpha)) / \alpha]$
The key: Subsumption - recursive types are equal to their "unrolling"

Return of subtyping

Can use subsumption and these subtyping rules:

$$
\overline{\boldsymbol{\tau}[(\boldsymbol{\mu} \boldsymbol{\alpha} \cdot \boldsymbol{\tau}) / \boldsymbol{\alpha}] \leq \boldsymbol{\mu} \boldsymbol{\alpha} \cdot \boldsymbol{\tau}}
$$

UNROLL

$$
\overline{\mu \alpha . \tau \leq \tau[(\mu \alpha . \tau) / \alpha]}
$$

Subtyping can "roll" or "unroll" a recursive type
Can now give empty-list, cons, and head the types we want:
Constructors use roll, destructors use unroll
Notice how little we did: One new form of type ($\boldsymbol{\mu} \boldsymbol{\alpha} \cdot \boldsymbol{\tau}$) and two new subtyping rules
(Skipping: Depth subtyping on recursive types is very interesting)

Metatheory

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

- Erasure (no run-time effect): unchanged
- Termination: changed!
- $(\lambda x: \mu \alpha . \alpha \rightarrow \alpha . x x)(\lambda x: \mu \alpha . \alpha \rightarrow \alpha . x x)$
- In fact, we're now Turing-complete without fix (actually, can type-check every closed $\boldsymbol{\lambda}$ term)
- Safety: still safe, but Canonical Forms harder
- Inference: Shockingly efficient for "STLC plus μ " (A great contribution of PL theory with applications in OO and XML-processing languages)

Syntax-directed $\boldsymbol{\mu}$ types

Recursive types via subsumption "seems magical"
Instead, we can make programmers tell the type-checker where/how to roll and unroll
"Iso-recursive" types: remove subtyping and add expressions:

$$
\begin{aligned}
\tau & ::=\cdots \mid \mu \alpha . \tau \\
e & :=\cdots\left|\operatorname{roll}_{\alpha . \tau} e\right| \text { unroll } e \\
v & ::=\cdots \mid \operatorname{roll}_{\mu \alpha . \tau} v \\
e \rightarrow & e e^{\prime} \\
\overline{\text { roll }}_{\mu \alpha . \tau} e \rightarrow \operatorname{roll}_{\mu \alpha . \tau} e^{\prime} \quad & e \rightarrow e^{\prime} \\
& \overline{\text { unroll } e \rightarrow{\text { unroll } e^{\prime}}^{\text {unroll }\left(\text { roll }_{\mu \alpha . \tau} v\right) \rightarrow v}}
\end{aligned}
$$

$$
\frac{\Delta ; \Gamma \vdash e: \tau[(\mu \alpha . \tau) / \alpha]}{\Delta ; \Gamma \vdash \operatorname{roll}_{\mu \alpha . \tau} e: \mu \alpha . \tau} \quad \frac{\Delta ; \Gamma \vdash e: \mu \alpha . \tau}{\Delta ; \Gamma \vdash \text { unroll } e: \tau[(\mu \alpha . \tau) / \alpha]}
$$

Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary
Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- Implicit typing can be impossible, difficult, or confusing
- Explicit coercions can be annoying and clutter language with no-ops
- Most languages do some of each

Anything is decidable if you make the code producer give the implementation enough "hints" about the "proof"

ML datatypes revealed

How is $\boldsymbol{\mu} \boldsymbol{\alpha} . \boldsymbol{\tau}$ related to
type $t=$ Foo of int | Bar of int * t
Constructor use is a "sum-injection" followed by an implicit roll

- So Foo e is really roll Foo(e) $_{\mathrm{t}}$)
- That is, Foo e has type t (the rolled type)

A pattern-match has an implicit unroll

- So match e with. . is really match unroll e with...

This "trick" works because different recursive types use different tags - so the type-checker knows which type to roll to

