
CSE-505: Programming Languages

Lecture 21 — Synchronous Message-Passing and
Concurrent ML

Zach Tatlock
2016

Message Passing

I Threads communicate via send and receive along channels
instead of read and write of references

I Not so different? (can implement references on top of
channels and channels on top of references)

I Synchronous message-passing
I Block until communication takes place
I Encode asynchronous by “spawn someone who blocks”

Zach Tatlock CSE-505 2016, Lecture 21 2

Concurrent ML

I CML is synchronous message-passing with first-class
synchronization events

I Can wrap synchronization abstractions to make new ones
I At run-time

I Originally done for ML and fits well with lambdas,
type-system, and implementation techniques, but more widely
applicable

I Available in Racket, OCaml, Haskell, ...

I Very elegant and under-appreciated

I Think of threads as very lightweight
I Creation/space cost about like a function call

Zach Tatlock CSE-505 2016, Lecture 21 3

The Basics

type ’a channel (* messages passed on channels *)

val new_channel : unit -> ’a channel

type ’a event (* when sync’ed on, get an ’a *)

val send : ’a channel -> ’a -> unit event

val receive : ’a channel -> ’a event

val sync : ’a event -> ’a

I Send and receive return “events” immediately

I Sync blocks until “the event happens”

I Separating these is key in a few slides

Zach Tatlock CSE-505 2016, Lecture 21 4

Simple version

Can define helper functions by trival composition:

let sendNow ch a = sync (send ch a) (* block *)

let recvNow ch = sync (receive ch) (* block *)

“Who communicates” is up to the CML implementation

I Can be nondeterministic when there are multiple
senders/receivers on the same channel

I Implementation needs collection of waiting senders xor
receivers

Terminology note:

I Function names are those in OCaml’s Event library.

I In SML, the CML book, etc.:
send sendEvt

receive recvEvt

sendNow send

recvNow recv

Zach Tatlock CSE-505 2016, Lecture 21 5

Bank Account Example

See lec21code.ml

I First version: In/out channels are only access to private
reference

I In channel of type action channel
I Out channel of type float channel

I Second version: Makes functional programmers smile
I State can be argument to a recursive function
I “Loop-carried”
I Hints at deep connection between references and channels

I Can implement the reference abstraction in CML

Zach Tatlock CSE-505 2016, Lecture 21 6

The Interface

The real point of the example is that you can abstract all the
threading and communication away from clients:

type acct

val mkAcct : unit -> acct

val get : acct -> float -> float

val put : acct -> float -> float

Hidden thread communcation:

I mkAcct makes a thread (the “this account server”)

I get and put make the server go around the loop once

Races naturally avoided: the server handles one request at a time

I CML implementation has queues for waiting communications

Zach Tatlock CSE-505 2016, Lecture 21 7

Streams

Another pattern/concept easy to code up in CML is a stream

I An infinite sequence of values, produced lazily (“on demand”)

Example in lec21code.ml: square numbers

Standard more complicated example: A network of streams for
producing prime numbers. One approach:

I First stream generates 2, 3, 4, ...
I When the last stream generates a number p, return it and

dynamically add a stream as the new last stream
I Draws input from old last stream but outputs only those that

are not divisible by p

Streams also:

I Have deep connections to circuits

I Are easy to code up in lazy languages like Haskell

I Are a key abstraction in real-time data processing

Zach Tatlock CSE-505 2016, Lecture 21 8

Wanting choice

I So far just used sendNow and recvNow, hidden behind simple
interfaces

I But these block until the rendezvous, which is insufficient for
many important communication patterns

I Example: add : int channel -> int channel -> int
I Must choose which to receive first; hurting performance if

other provider ready earlier

I Example: or : bool channel -> bool channel -> bool
I Cannot short-circuit

This is why we split out sync and have other primitives

Zach Tatlock CSE-505 2016, Lecture 21 9

Choose and Wrap

type ’a event (* when sync’ed on, get an ’a *)

val send : ’a channel -> ’a -> unit event

val receive : ’a channel -> ’a event

val sync : ’a event -> ’a

val choose : ’a event list -> ’a event

val wrap : ’a event -> (’a -> ’b) -> ’b event

I choose: when synchronized on, block until one of the events
happen (cf. UNIX select, but more useful to have sync
separate)

I wrap: an event with the function as post-processing
I Can wrap as many times as you want

Note: Skipping a couple other key primitives (e.g., withNack for
timeouts)

Zach Tatlock CSE-505 2016, Lecture 21 10

Circuits

To an electrical engineer:

I send and receive are ends of a gate

I wrap is combinational logic connected to a gate

I choose is a multiplexer

I sync is getting a result out

To a programming-language person:

I Build up a data structure describing a communication protocol

I Make it a first-class value that can be by passed to sync

I Provide events in interfaces so other libraries can compose
larger abstractions

Zach Tatlock CSE-505 2016, Lecture 21 11

What can’t you do

CML is by-design for point-to-point communication

I Provably impossible to do things like 3-way swap (without
busy-waiting or higher-level protocols)

I Related to issues of common-knowledge, especially in a
distributed setting

I Metamoral: Being a broad computer scientist is really useful

Zach Tatlock CSE-505 2016, Lecture 21 12

A note on implementation and paradigms

CML encourages using lots (100,000s) of threads

I Example: X Window library with one thread per widget

Threads should be cheap to support this paradigm
I SML N/J: about as expensive as making a closure!

I Think “current stack” plus a few words
I Cost no time when blocked on a channel (dormant)

I OCaml: Not cheap, unfortunately

A thread responding to channels is a lot like an asynchronous
object (cf. actors)

Zach Tatlock CSE-505 2016, Lecture 21 13

