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Classless OOP

OOP gave us code-reuse via inheritance and extensibility via
late-binding

Can we throw out classes and still get OOP? Yes

Can it have a type system that prevents “no match found” and
“no best match” errors? Yes, but we won’t get there

This is mind-opening stuff if you’ve never seen it

Will make up syntax as we go...
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Make objects directly

Everything is an object. You can make objects directly:

let p = [

field x = 7;

field y = 9;

right_quad(){ x.gt(0) && y.gt(0) } // cf. 0.lte(y)

]

p now bound to an object

I Can invoke its methods and read/write its fields

No classes: Constructors are easy to encode

let make_pt = [

doit(x0,y0) { [ field x=x0; field y=y0;... ] }

]
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Inheritance and Override

Building objects from scratch won’t get us late-binding and code
reuse. Here’s the trick:

I clone method produces a (shallow) copy of an object

I method “slots” can be mutable

let o1 = [ // still have late-binding

odd(x) {if x.eq(0) then false else self.even(x-1)}

even(x) {if x.eq(0) then true else self.odd(x-1) }

]

let o2 = o1.clone()

o2.even(x) := {(x.mod(2)).eq(0)}

Language doesn’t grow: just methods and mutable “slots”
Can use for constructors too: clone and assign fields
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Extension

But that trick doesn’t work to add slots to an object, a common
use of subclassing

Having something like “extend e1 (x=e2)” that mutates e1 to have
a new slot is problematic semantically (what if e1 has a slot named
x) and for efficiency (may not be room where e1 is allocated)

Instead, we can build a new object with a special parent slot:
[parent=e1; x=e2]

parent is very special because definition of method-lookup (the
issue in OO) depends on it (else this isn’t inheritance)
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Method Lookup

To find the m method of o:

I Look for a slot named m

I If not found, look in object held in parent slot

But we still have late-binding: for method in parent slot, we still
have self refer to the original o.

Two inequivalent ways to define parent=e1:

I Delegation: parent refers to result of e1

I Embedding: parent refers to result of e1.clone()

Mutation of result of e1 (or its parent or grandparent or ...)
exposes the difference

I We’ll assume delegation
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Oh so flexible

Delegation is way more flexible (and simple!) (and dangerous!)
than class-based OO: The object being delegated to is usually used
like a class, but its slots may be mutable

I Assigning to a slot in a delegated object changes every object
that delegates to it (transitively)

I Clever change-propagation but as dangerous as globals and
arguably more subtle?

I Assigning to a parent slot is “dynamic inheritance” —
changes where slots are inherited from

Classes restrict what you can do and how you think, e.g., never
thinking of clever run-time modifications of inheritance
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Javascript: A Few Notes

I Javascript gives assignment “extension” semantics if field not
already there. Implementations use indirection (hashtables).

I parent is called prototype
I new F(...) creates a new object o, calls F with this bound

to o, and returns o
I No special notion of constructor
I Functions are objects too
I This isn’t quite prototype-based inheritance, but can code it

up:

function inheritFrom(o) {

function F() {}

F.prototype = o;

return new F();

}

I No clone (depending on version), but can copy fields
explicitly
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Rarely what you want

We have the essence of OOP in a tiny language with more
flexibility than we usually want

Avoid it via careful coding idioms:
I Create trait/abstract objects: Just immutable methods

I Analogous role to virtual-method tables

I Extend with prototype/template objects: Add mutable fields
but don’t mutate them

I Analogous role to classes

I Clone prototypes to create concrete/normal objects
I Analogous role to objects (clone is constructor)

Traits can extend other traits and prototypes other prototypes

I Analogous to subclassing
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Coming full circle

This idiom is so important, it’s worth having a type system that
enforces it

For example, a template object cannot have its members accessed
(except clone)

We end up getting close to classes, but from first principles and
still allowing the full flexibility when you want it
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