
CSE-505: Programming Languages

Lecture 26 — Classless OOP

Zach Tatlock
2016

Classless OOP

OOP gave us code-reuse via inheritance and extensibility via
late-binding

Can we throw out classes and still get OOP? Yes

Can it have a type system that prevents “no match found” and
“no best match” errors? Yes, but we won’t get there

This is mind-opening stuff if you’ve never seen it

Will make up syntax as we go...

Zach Tatlock CSE-505 2016, Lecture 26 2

Make objects directly

Everything is an object. You can make objects directly:

let p = [

field x = 7;

field y = 9;

right_quad(){ x.gt(0) && y.gt(0) } // cf. 0.lte(y)

]

p now bound to an object

I Can invoke its methods and read/write its fields

No classes: Constructors are easy to encode

let make_pt = [

doit(x0,y0) { [field x=x0; field y=y0;...] }

]

Zach Tatlock CSE-505 2016, Lecture 26 3

Inheritance and Override

Building objects from scratch won’t get us late-binding and code
reuse. Here’s the trick:

I clone method produces a (shallow) copy of an object

I method “slots” can be mutable

let o1 = [// still have late-binding

odd(x) {if x.eq(0) then false else self.even(x-1)}

even(x) {if x.eq(0) then true else self.odd(x-1) }

]

let o2 = o1.clone()

o2.even(x) := {(x.mod(2)).eq(0)}

Language doesn’t grow: just methods and mutable “slots”
Can use for constructors too: clone and assign fields

Zach Tatlock CSE-505 2016, Lecture 26 4

Extension

But that trick doesn’t work to add slots to an object, a common
use of subclassing

Having something like “extend e1 (x=e2)” that mutates e1 to have
a new slot is problematic semantically (what if e1 has a slot named
x) and for efficiency (may not be room where e1 is allocated)

Instead, we can build a new object with a special parent slot:
[parent=e1; x=e2]

parent is very special because definition of method-lookup (the
issue in OO) depends on it (else this isn’t inheritance)

Zach Tatlock CSE-505 2016, Lecture 26 5

Method Lookup

To find the m method of o:

I Look for a slot named m

I If not found, look in object held in parent slot

But we still have late-binding: for method in parent slot, we still
have self refer to the original o.

Two inequivalent ways to define parent=e1:

I Delegation: parent refers to result of e1

I Embedding: parent refers to result of e1.clone()

Mutation of result of e1 (or its parent or grandparent or ...)
exposes the difference

I We’ll assume delegation

Zach Tatlock CSE-505 2016, Lecture 26 6

Oh so flexible

Delegation is way more flexible (and simple!) (and dangerous!)
than class-based OO: The object being delegated to is usually used
like a class, but its slots may be mutable

I Assigning to a slot in a delegated object changes every object
that delegates to it (transitively)

I Clever change-propagation but as dangerous as globals and
arguably more subtle?

I Assigning to a parent slot is “dynamic inheritance” —
changes where slots are inherited from

Classes restrict what you can do and how you think, e.g., never
thinking of clever run-time modifications of inheritance

Zach Tatlock CSE-505 2016, Lecture 26 7

Javascript: A Few Notes

I Javascript gives assignment “extension” semantics if field not
already there. Implementations use indirection (hashtables).

I parent is called prototype
I new F(...) creates a new object o, calls F with this bound

to o, and returns o
I No special notion of constructor
I Functions are objects too
I This isn’t quite prototype-based inheritance, but can code it

up:

function inheritFrom(o) {

function F() {}

F.prototype = o;

return new F();

}

I No clone (depending on version), but can copy fields
explicitly

Zach Tatlock CSE-505 2016, Lecture 26 8

Rarely what you want

We have the essence of OOP in a tiny language with more
flexibility than we usually want

Avoid it via careful coding idioms:
I Create trait/abstract objects: Just immutable methods

I Analogous role to virtual-method tables

I Extend with prototype/template objects: Add mutable fields
but don’t mutate them

I Analogous role to classes

I Clone prototypes to create concrete/normal objects
I Analogous role to objects (clone is constructor)

Traits can extend other traits and prototypes other prototypes

I Analogous to subclassing

Zach Tatlock CSE-505 2016, Lecture 26 9

Coming full circle

This idiom is so important, it’s worth having a type system that
enforces it

For example, a template object cannot have its members accessed
(except clone)

We end up getting close to classes, but from first principles and
still allowing the full flexibility when you want it

Zach Tatlock CSE-505 2016, Lecture 26 10

