CSE-505: Programming Languages

Lecture 27 - Higher-Order Polymorphism

Matthew Fluet
2016

Looking back, looking forward

Have defined System F.

- Metatheory (what properties does it have)
- What (else) is it good for
- How/why ML is more restrictive and implicit
- Recursive types (also use type variables, but differently)
- Existential types (dual to universal types)

Next:

- Type operators and type-level "computations"

System F with Recursive and Existential Types

```
\(e \quad:=c|x| \lambda x: \tau . e|e e|\)
    几人. \(e|e[\tau]|\)
    pack \(_{\exists \alpha . \tau}(\tau, e) \mid\) unpack \(e\) as \((\alpha, x)\) in \(e \mid\)
    roll \(\mu \alpha . \tau(e) \mid\) unroll \((e)\)
\(v \quad::=c|\lambda x: \tau . e| \Lambda \alpha . e \mid\) pack \(_{\exists \alpha . \tau}(\tau, v) \mid \operatorname{roll}_{\mu \alpha . \tau}(v)\)
```

$e \rightarrow_{\mathrm{cbv}} e^{\prime}$

$$
\overline{\left(\lambda x: \tau . e_{b}\right) v_{a} \rightarrow_{\mathrm{cbv}} e_{b}\left[v_{a} / x\right]}
$$

$$
\frac{e_{f} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}}{e_{f} e_{a} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime} e_{a}} \quad \frac{e_{a} \rightarrow_{\mathrm{cbv}} e_{a}^{\prime}}{v_{f} e_{a} \rightarrow_{\mathrm{cbv}} v_{f} e_{a}^{\prime}}
$$

$$
\overline{\left(\Lambda \alpha \cdot e_{b}\right)\left[\tau_{a}\right] \rightarrow_{\mathrm{cbv}} e_{b}\left[\tau_{a} / \alpha\right]}
$$

$$
\frac{e_{f} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}}{e_{f}\left[\tau_{a}\right] \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}\left[\tau_{a}\right]}
$$

$$
\frac{e_{a} \rightarrow_{\mathrm{cbv}} e_{a}^{\prime}}{\operatorname{pack}_{\exists \alpha . \tau}\left(\tau_{w}, e_{a}\right) \rightarrow_{\mathrm{cbv}} \operatorname{pack}_{\exists \alpha . \tau}\left(\tau_{w}, e_{a}^{\prime}\right)}
$$

$$
\frac{e_{a} \rightarrow_{\mathrm{cbv}} e_{a}^{\prime}}{\text { unpack } e_{a} \text { as }(\alpha, x) \text { in } e_{b} \rightarrow_{\mathrm{cbv}} \text { unpack } e_{a}^{\prime} \text { as }(\alpha, x) \text { in } e_{b}}
$$

$$
\overline{\text { unpack pack }_{\exists \alpha .}\left(\tau_{w}, v_{a}\right) \text { as }(\alpha, x) \text { in } e_{b} \rightarrow_{\mathrm{cbv}} e_{b}\left[\tau_{w} / \alpha\right]\left[v_{a} / \boldsymbol{x}\right]}
$$

$$
\frac{e_{a} \rightarrow_{\mathrm{cbv}} e_{a}^{\prime}}{\operatorname{unroll}\left(e_{a}\right) \rightarrow_{\mathrm{cbv}} \operatorname{unroll}\left(e_{a}^{\prime}\right)}
$$

$$
\overline{\operatorname{unroll}\left(\text { roll }_{\mu \alpha . \tau}\left(v_{a}\right)\right) \rightarrow_{\mathrm{cbv}} v_{a}}
$$

System F with Recursive and Existential Types

$$
\begin{aligned}
& \tau::= \\
& \Delta::= \\
& \Gamma::=\quad \cdot|\boldsymbol{i n t}| \boldsymbol{\tau}, \boldsymbol{\tau}|\alpha| \forall \alpha . \tau|\exists \alpha . \tau| \mu \alpha . \tau \\
& \Gamma, x: \tau
\end{aligned}
$$

$$
\Delta ; \Gamma \vdash e: \tau
$$

$\overline{\Delta ; \Gamma \vdash c: \text { int }} \quad \frac{\Gamma(x)=\tau}{\Delta ; \Gamma \vdash x: \tau}$

$$
\begin{array}{rc}
\frac{\Delta \vdash \tau_{a} \quad \Delta ; \Gamma, x: \tau_{a} \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \lambda x: \tau_{a} \cdot e_{b}: \tau_{a} \rightarrow \tau_{r}} & \frac{\Delta ; \Gamma \vdash e_{f}: \tau_{a} \rightarrow \tau_{r} \quad \Delta ; \Gamma \vdash e_{a}: \tau_{a}}{\Delta ; \Gamma \vdash e_{f} e_{a}: \tau_{r}} \\
\frac{\Delta, \alpha ; \Gamma \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \Lambda \alpha \cdot e_{b}: \forall \alpha \cdot \tau_{r}} & \frac{\Delta ; \Gamma \vdash e_{f}: \forall \alpha \cdot \tau_{r} \quad \Delta \vdash \tau_{a}}{\Delta ; \Gamma \vdash e_{f}\left[\tau_{a}\right]: \tau_{r}\left[\tau_{a} / \alpha\right]}
\end{array}
$$

$$
\frac{\Delta ; \Gamma \vdash e_{a}: \tau\left[\tau_{w} / \alpha\right]}{\Delta ; \Gamma \vdash \operatorname{pack}_{\exists \alpha . \tau}\left(\tau_{w}, e_{a}\right): \exists \alpha \cdot \tau}
$$

$$
\frac{\Delta ; \Gamma \vdash e_{a}: \exists \alpha . \tau \quad \Delta, \alpha ; \Gamma, x: \tau \vdash e_{b}: \tau_{r} \quad \Delta \vdash \tau_{r}}{\Delta ; \Gamma \vdash \text { unpack } e_{a} \text { as }(\alpha, x) \text { in } e_{b}: \tau_{r}}
$$

$$
\frac{\Delta ; \Gamma \vdash e_{a}: \tau[(\mu \alpha . \tau) / \alpha]}{\Delta ; \Gamma \vdash \operatorname{roll}_{\mu \alpha .} \tau\left(e_{a}\right): \mu \alpha . \tau}
$$

$$
\frac{\Delta ; \Gamma \vdash e_{a}: \mu \alpha . \tau}{\Delta ; \Gamma \vdash \operatorname{unroll}\left(e_{a}\right): \tau[(\mu \alpha . \tau) / \alpha]}
$$

Goal

Understand what this interface means and why it matters:

```
type 'a list
val empty : 'a list
val cons : 'a -> 'a list -> 'a list
val unlist : 'a list -> ('a * 'a list) option
val size : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
```

Story so far:

- Recursive types to define list data structure
- Universal types to keep element type abstract in library
- Existential types to keep list type abstract in client But, "cheated" when abstracting the list type in client: considered just intlist.

(Integer) List Library with \exists

List library is an existential package:

$$
\begin{aligned}
& \text { pack }(\mu \xi . \text { unit }+(\text { int } * \xi), \text { list_library }) \\
& \text { as } \exists L .\{\text { empty }: L ; \\
& \text { cons }: \text { int } \rightarrow L \rightarrow L ; \\
& \text { unlist }: L \rightarrow \text { unit }+(\text { int } * L) ; \\
& \text { map }:(\text { int } \rightarrow \text { int }) \rightarrow L \rightarrow L ; \\
& \ldots\}
\end{aligned}
$$

The witness type is integer lists: $\boldsymbol{\mu} \boldsymbol{\xi}$. unit $+($ int $* \boldsymbol{\xi})$.
The existential type variable L represents integer lists.
List operations are monomorphic in element type (int).
The map function only allows mapping integer lists to integer lists.

(Polymorphic?) List Library with \forall / \exists

List library is a type abstraction that yields an existential package:

```
\(\Lambda \alpha \cdot \operatorname{pack}(\boldsymbol{\mu} \xi\). unit \(+(\alpha * \xi)\), list_library \()\)
as \(\exists L\). \{empty : \(L\);
    cons : \(\alpha \rightarrow L \rightarrow L\);
    unlist : \(L \rightarrow\) unit \(+(\alpha * L)\);
    map \(:(\alpha \rightarrow \alpha) \rightarrow L \rightarrow L\);
    ...\}
```

The witness type is α lists: $\boldsymbol{\mu} \boldsymbol{\xi}$. unit $+(\alpha * \xi)$.
The existential type variable L represents $\boldsymbol{\alpha}$ lists.
List operations are monomorphic in element type ($\boldsymbol{\alpha}$).
The map function only allows mapping $\boldsymbol{\alpha}$ lists to $\boldsymbol{\alpha}$ lists.

Type Abbreviations and Type Operators

Reasonable enough to provide list type as a (parametric) type abbreviation:

$$
\mathrm{L} \alpha=\mu \xi . \text { unit }+(\alpha * \xi)
$$

- replace occurrences of $\mathbf{L} \boldsymbol{\tau}$ in programs with $(\boldsymbol{\mu} \boldsymbol{\xi}$. unit $+(\boldsymbol{\alpha} * \boldsymbol{\xi}))[\tau / \boldsymbol{\alpha}]$

Gives an informal notion of functions at the type-level.

But, doesn't help with with list library, because this exposes the definition of list type.

- How "modular" and "safe" are libraries built from cpp macros?

Type Abbreviations and Type Operators

Instead, provide list type as a type operator:

- a function from types to types

$$
\mathrm{L}=\lambda \alpha . \mu \xi . \text { unit }+(\alpha * \xi)
$$

Gives a formal notion of functions at the type-level.

- abstraction and application at the type-level
- equivalence of type-level expressions
- well-formedness of type-level expressions

List library will be an existential package that hides a type operator, (rather than a type).

Type-level Expressions

Abstraction and application at the type level makes it possible to write the same type with different syntax.

$$
\mathbf{I d}=\lambda \alpha . \alpha
$$

| int \rightarrow bool | int \rightarrow Id bool | Id int \rightarrow bool |
| :---: | :---: | :---: | Id int \rightarrow Id bool

Type-level Expressions

Abstraction and application at the type level makes it possible to write the same type with different syntax.

$$
\mathbf{I d}=\lambda \alpha \cdot \alpha
$$

int \rightarrow bool \quad int \rightarrow Id bool \quad Id int \rightarrow bool \quad Id int \rightarrow Id bool

$$
\text { Id }(\text { int } \rightarrow \text { bool }) \quad \text { Id }(\text { Id }(\text { int } \rightarrow \text { bool }))
$$

Require a precise definition of when two types are the same:

$$
\tau \equiv \tau^{\prime}
$$

$$
\overline{\left(\lambda \alpha . \tau_{b}\right) \tau_{a} \equiv \tau_{b}\left[\alpha / \tau_{a}\right]}
$$

Type-level Expressions

Abstraction and application at the type level makes it possible to write the same type with different syntax.

$$
\mathbf{I d}=\lambda \alpha . \alpha
$$

int \rightarrow bool \quad int \rightarrow Id bool \quad Id int \rightarrow bool \quad Id int \rightarrow Id bool

$$
\text { Id }(\text { int } \rightarrow \text { bool }) \quad \text { Id }(\text { Id }(\text { int } \rightarrow \text { bool }))
$$

Require a typing rule to exploit types that are the same:

$$
\Delta ; \Gamma \vdash e: \tau
$$

$$
\frac{\Delta ; \Gamma \vdash e: \tau \quad \tau \equiv \tau^{\prime}}{\Delta ; \Gamma \vdash e: \tau^{\prime}}
$$

Type-level Expressions

Abstraction and application at the type level makes it possible to write the same type with different syntax.

$$
\mathbf{I d}=\lambda \alpha . \alpha
$$

int \rightarrow bool \quad int \rightarrow Id bool \quad Id int \rightarrow bool \quad Id int \rightarrow Id bool

$$
\text { Id }(\text { int } \rightarrow \text { bool }) \quad \text { Id }(\text { Id }(\text { int } \rightarrow \text { bool }))
$$

Admits "wrong/bad/meaningless" types:
bool int
(ld bool) int
bool (Id int)

Type-level Expressions

Abstraction and application at the type level makes it possible to write the same type with different syntax.

$$
\mathbf{I d}=\lambda \alpha . \alpha
$$

int \rightarrow bool \quad int \rightarrow Id bool \quad Id int \rightarrow bool \quad Id int \rightarrow Id bool

$$
\text { Id }(\text { int } \rightarrow \text { bool }) \quad \text { Id }(\text { Id }(\text { int } \rightarrow \text { bool }))
$$

Require a "type system" for types:
$\Delta \vdash \tau:: \kappa$

$$
\frac{\Delta \vdash \tau_{f}:: \kappa_{a} \Rightarrow \kappa_{r} \quad \Delta \vdash \tau_{a}:: \kappa_{a}}{\Delta \vdash \tau_{f} \tau_{a}:: \kappa_{r}}
$$

Terms, Types, and Kinds, Oh My

Terms, Types, and Kinds, Oh My

```
Terms:
    e ::= c|x|\lambdax:\tau. e|e e| \Lambda\alpha::\kappa. e|e[\tau]
    v ::= c|\lambdax:\tau.e| \Lambda\alpha::\kappa. e
```

- atomic values (e.g., c) and operations (e.g., $e+e$)
- compound values (e.g., ($\boldsymbol{v}, \boldsymbol{v})$) and operations (e.g., e.1)
- value abstraction and application
- type abstraction and application
- classified by types (but not all terms have a type)

Terms, Types, and Kinds, Oh My

Terms: | $e \quad:=c\|x\| \lambda x: \tau . e\|e e\| \Lambda \alpha:: \kappa . e \mid e[\tau]$ |
| :--- |
| $v \quad:=c\|\lambda x: \tau . e\| \Lambda \alpha:: \kappa . e$ |

- atomic values (e.g., c) and operations (e.g., $\boldsymbol{e}+\boldsymbol{e}$)
- compound values (e.g., ($\boldsymbol{v}, \boldsymbol{v})$) and operations (e.g., e.1)
- value abstraction and application
- type abstraction and application
- classified by types (but not all terms have a type)

Types: $\tau \quad::=$ int $|\tau \rightarrow \tau| \alpha|\forall \alpha:: \kappa . \tau| \lambda \alpha:: \kappa . \tau \mid \tau \tau$

- atomic types (e.g., int) classify the terms that evaluate to atomic values
- compound types (e.g., $\boldsymbol{\tau} * \boldsymbol{\tau}$) classify the terms that evaluate to compound values
- function types $\boldsymbol{\tau} \rightarrow \boldsymbol{\tau}$ classify the terms that evaluate to value abstractions
- universal types $\forall \boldsymbol{\alpha} . \boldsymbol{\tau}$ classify the terms that evaluate to type abstractions
- type abstraction and application
- type abstractions do not classify terms, but can be applied to type arguments to form types that do classify terms
- classified by kinds (but not all types have a kind)

Terms, Types, and Kinds, Oh My

Types: $\tau::=$ int $|\tau \rightarrow \tau| \alpha|\forall \alpha:: \kappa . \tau| \lambda \alpha:: \kappa . \tau \mid \tau \tau$

- atomic types (e.g., int) classify the terms that evaluate to atomic values
- compound types (e.g., $\boldsymbol{\tau} * \boldsymbol{\tau}$) classify the terms that evaluate to compound values
- function types $\boldsymbol{\tau} \rightarrow \boldsymbol{\tau}$ classify the terms that evaluate to value abstractions
- universal types $\forall \alpha . \tau$ classify the terms that evaluate to type abstractions
- type abstraction and application
- type abstractions do not classify terms, but can be applied to type arguments to form types that do classify terms
- classified by kinds (but not all types have a kind)

Terms, Types, and Kinds, Oh My

Types: $\tau \quad::=$ int $|\tau \rightarrow \tau| \alpha|\forall \alpha:: \kappa . \tau| \lambda \alpha:: \kappa . \tau \mid \tau \tau$

- atomic types (e.g., int) classify the terms that evaluate to atomic values
- compound types (e.g., $\boldsymbol{\tau} * \boldsymbol{\tau}$) classify the terms that evaluate to compound values
- function types $\boldsymbol{\tau} \rightarrow \boldsymbol{\tau}$ classify the terms that evaluate to value abstractions
- universal types $\forall \alpha . \tau$ classify the terms that evaluate to type abstractions
- type abstraction and application
- type abstractions do not classify terms, but can be applied to type arguments to form types that do classify terms
- classified by kinds (but not all types have a kind)

Kinds $\kappa \quad::=\star \mid \kappa \Rightarrow \kappa$

- kind of proper types \star classify the types (that are the same as the types) that classify terms
- arrow kinds $\kappa \Rightarrow \kappa$ classify the types (that are the same as the types) that are type abstractions

Kind Examples

Kind Examples

- \star
- the kind of proper types
- Bool, Bool \rightarrow Bool, ...

Kind Examples

- \star
- the kind of proper types
- Bool, Bool \rightarrow Bool, ...
$\rightarrow \star \Rightarrow \star$
- the kind of (unary) type operators
- List, Maybe, ...

Kind Examples

- \star
- the kind of proper types
- Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \Rightarrow 大
- the kind of (unary) type operators
- List, Maybe, ...

Kind Examples

- *
- the kind of proper types
- Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \Rightarrow 大
- the kind of (unary) type operators
- List, Maybe, ...
- $\Rightarrow \Rightarrow \star \Rightarrow \star$
- the kind of (binary) type operators
- Either, Map, ...

Kind Examples

- *
- the kind of proper types
- Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \Rightarrow 大
- the kind of (unary) type operators
- List, Maybe, Map Int, Either (List Bool), ...
- $\Rightarrow \Rightarrow \star \Rightarrow \star$
- the kind of (binary) type operators
- Either, Map, ...

Kind Examples

- \star
- the kind of proper types
- Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- $\Rightarrow \Rightarrow \star$
- the kind of (unary) type operators
- List, Maybe, Map Int, Either (List Bool), ...
- $\Rightarrow \Rightarrow \star \Rightarrow \star$
- the kind of (binary) type operators
- Either, Map, ...
- $(\star \Rightarrow \star) \Rightarrow \star$
- the kind of higher-order type operators taking unary type operators to proper types
- ???, ...

Kind Examples

- \star
- the kind of proper types
- Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- $\Rightarrow \Rightarrow \star$
- the kind of (unary) type operators
- List, Maybe, Map Int, Either (List Bool), ...
- $\Rightarrow \star \Rightarrow \star$
- the kind of (binary) type operators
- Either, Map, ...
- $(\star \Rightarrow \star) \Rightarrow \star$
- the kind of higher-order type operators taking unary type operators to proper types
- ???, ...
- $(\star \Rightarrow \star) \Rightarrow \star \Rightarrow \star$
- the kind of higher-order type operators taking unary type operators to unary type operators
- MaybeT, ListT, ...

Kind Examples

- \star
- the kind of proper types
- Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- $\Rightarrow \Rightarrow \star$
- the kind of (unary) type operators
- List, Maybe, Map Int, Either (List Bool), ListT Maybe, ...
- $\Rightarrow \star \Rightarrow \star$
- the kind of (binary) type operators
- Either, Map, ...
- $(\star \Rightarrow \star) \Rightarrow \star$
- the kind of higher-order type operators taking unary type operators to proper types
- ???, ...
- $(\star \Rightarrow \star) \Rightarrow \star \Rightarrow \star$
- the kind of higher-order type operators taking unary type operators to unary type operators
- MaybeT, ListT, ...

System F_{ω} : Syntax

$$
\begin{aligned}
e & ::=c|x| \lambda x: \tau . e|e e| \Lambda \alpha:: \kappa . e \mid e[\tau] \\
v & ::=c|\lambda x: \tau . e| \Lambda \alpha:: \kappa . e \\
\Gamma & ::=-\mid \Gamma, x: \tau \\
\tau & ::=\text { int }|\tau \rightarrow \tau| \alpha|\forall \alpha:: \kappa . \tau| \lambda \alpha:: \kappa . \tau \mid \tau \tau \\
\Delta & ::=\cdot \mid \Delta, \alpha:: \kappa \\
\kappa & ::=\star \mid \kappa \Rightarrow \kappa
\end{aligned}
$$

New things:

- Types: type abstraction and type application
- Kinds: the "types" of types
- \star : kind of proper types
- $\kappa_{a} \Rightarrow \kappa_{r}$: kind of type operators

System F_{ω} : Operational Semantics

Small-step, call-by-value (CBV), left-to-right operational semantics:
$e \rightarrow_{\mathrm{cbv}} e^{\prime}$

$$
\begin{array}{cc}
\overline{\left(\lambda x: \tau . e_{b}\right) v_{a} \rightarrow_{\mathrm{cbv}} e_{b}\left[v_{a} / x\right]} & \frac{e_{f} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}}{e_{f} e_{a} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime} e_{a}} \\
\frac{e_{a} \rightarrow_{\mathrm{cbv}} e_{a}^{\prime}}{v_{f} e_{a} \rightarrow_{\mathrm{cbv}} v_{f} e_{a}^{\prime}} & \overline{\left(\Lambda \alpha:: \kappa_{a} \cdot e_{b}\right)\left[\tau_{a}\right] \rightarrow_{\mathrm{cbv}} e_{b}\left[\tau_{a} / \alpha\right]} \\
\frac{e_{f} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}}{e_{f}\left[\tau_{a}\right] \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}\left[\tau_{a}\right]}
\end{array}
$$

- Unchanged! All of the new action is at the type-level.

System F_{ω} : Type System, part 1

In the context $\boldsymbol{\Delta}$ the type $\boldsymbol{\tau}$ has kind κ :

```
\Delta\vdash\tau::\kappa
```

$$
\overline{\Delta \vdash \text { int }:: \star}
$$

$$
\frac{\Delta(\alpha)=\kappa}{\Delta \vdash \alpha:: \kappa}
$$

$$
\frac{\Delta, \alpha:: \kappa_{a} \vdash \tau_{b}:: \kappa_{r}}{\Delta \vdash \lambda \alpha:: \kappa_{a} \cdot \tau_{b}:: \kappa_{a} \Rightarrow \kappa_{r}}
$$

$$
\frac{\Delta \vdash \tau_{a}:: \star \quad \Delta \vdash \tau_{r}:: \star}{\Delta \vdash \tau_{a} \rightarrow \tau_{r}:: \star}
$$

$$
\frac{\Delta, \alpha:: \kappa_{a} \vdash \tau_{r}:: \star}{\Delta \vdash \forall \alpha:: \kappa_{a} \cdot \tau_{r}:: \star}
$$

$$
\frac{\Delta \vdash \tau_{f}:: \kappa_{a} \Rightarrow \kappa_{r} \quad \Delta \vdash \tau_{a}:: \kappa_{a}}{\Delta \vdash \tau_{f} \tau_{a}:: \kappa_{r}}
$$

Should look familiar:

System F_{ω} : Type System, part 1

In the context $\boldsymbol{\Delta}$ the type $\boldsymbol{\tau}$ has kind κ :
$\Delta \vdash \tau:: \kappa$

$$
\overline{\Delta \vdash \text { int }:: \star}
$$

$$
\frac{\Delta(\alpha)=\kappa}{\Delta \vdash \alpha:: \kappa}
$$

$$
\frac{\Delta, \alpha:: \kappa_{a} \vdash \tau_{b}:: \kappa_{r}}{\Delta \vdash \lambda \alpha:: \kappa_{a} \cdot \tau_{b}:: \kappa_{a} \Rightarrow \kappa_{r}}
$$

$$
\begin{gathered}
\frac{\Delta \vdash \tau_{a}:: \star \quad \Delta \vdash \tau_{r}:: \star}{\Delta \vdash \tau_{a} \rightarrow \tau_{r}:: \star} \\
\frac{\Delta, \alpha:: \kappa_{a} \vdash \tau_{r}:: \star}{\Delta \vdash \forall \alpha:: \kappa_{a} \cdot \tau_{r}:: \star}
\end{gathered}
$$

$$
\frac{\Delta \vdash \tau_{f}:: \kappa_{a} \Rightarrow \kappa_{r} \quad \Delta \vdash \tau_{a}:: \kappa_{a}}{\Delta \vdash \tau_{f} \tau_{a}:: \kappa_{r}}
$$

Should look familiar:
the typing rules of the Simply-Typed Lambda Calculus "one level up"

System F_{ω} : Type System, part 2

Definitional Equivalence of τ and τ^{\prime} :

```
\tau \equiv}\mp@subsup{\tau}{}{\prime
```

$\overline{\tau \equiv \tau} \quad \frac{\tau_{2} \equiv \tau_{1}}{\tau_{1} \equiv \tau_{2}} \quad \frac{\tau_{1} \equiv \tau_{2}}{\tau_{1} \equiv \tau_{3} \equiv \tau_{3}}$
$\tau_{a 1} \equiv \tau_{a 2} \quad \tau_{r 1} \equiv \tau_{r 2}$
$\tau_{a 1} \rightarrow \tau_{r 1} \equiv \tau_{a 2} \rightarrow \tau_{r 2}$$\quad \frac{\tau_{r 1} \equiv \tau_{r 2}}{\forall \alpha:: \kappa_{a} \cdot \tau_{r 1} \equiv \forall \alpha:: \kappa_{a} \cdot \tau_{r 2}}$
$\tau_{b 1} \equiv \tau_{b 2}$
$\lambda \alpha:: \kappa_{a} \cdot \tau_{b 1} \equiv \lambda \alpha:: \kappa_{a} \cdot \tau_{b 2}$$\frac{\tau_{f 1} \equiv \tau_{f 2} \quad \tau_{a 1} \equiv \tau_{a 2}}{\tau_{f 1} \tau_{a 1} \equiv \tau_{f 2} \tau_{a 2}}$

$$
\overline{\left(\lambda \alpha:: \kappa_{a} \cdot \tau_{b}\right) \tau_{a} \equiv \tau_{b}\left[\alpha / \tau_{a}\right]}
$$

Should look familiar:

System F_{ω} : Type System, part 2

Definitional Equivalence of τ and τ^{\prime} :

```
\tau \equiv}\mp@subsup{\tau}{}{\prime
```

$$
\begin{array}{cc}
\frac{\tau_{2} \equiv \tau_{1}}{\tau_{1} \equiv \tau_{2}} & \frac{\tau_{1} \equiv \tau_{2}}{\tau_{1} \equiv \tau_{3} \equiv \tau_{3}} \\
\frac{\tau_{a 1} \equiv \tau_{a 2}}{\tau_{a 1} \rightarrow \tau_{r 1} \equiv \tau_{a 2} \rightarrow \tau_{r 2}} & \frac{\tau_{r 1} \equiv \tau_{r 2}}{\forall \alpha:: \kappa_{a} \cdot \tau_{r 1} \equiv \forall \alpha:: \kappa_{a} \cdot \tau_{r 2}} \\
\frac{\tau_{b 1} \equiv \tau_{b 2}}{\lambda \alpha:: \kappa_{a} \cdot \tau_{b 1} \equiv \lambda \alpha:: \kappa_{a} \cdot \tau_{b 2}} & \frac{\tau_{f 1} \equiv \tau_{f 2}}{\tau_{f 1} \tau_{a 1} \equiv \tau_{f 2} \tau_{a 2}}
\end{array}
$$

$$
\overline{\left(\lambda \alpha:: \kappa_{a} \cdot \tau_{b}\right) \tau_{a} \equiv \tau_{b}\left[\alpha / \tau_{a}\right]}
$$

Should look familiar:
the full reduction rules of the Lambda Calculus "one level up"

System F_{ω} : Type System, part 3

In the contexts $\boldsymbol{\Delta}$ and $\boldsymbol{\Gamma}$ the expression \boldsymbol{e} has type $\boldsymbol{\tau}$:

$$
\Delta ; \Gamma \vdash e: \tau
$$

$$
\overline{\Delta ; \Gamma \vdash c: \text { int }}
$$

$$
\frac{\Gamma(x)=\tau}{\Delta ; \Gamma \vdash x: \tau}
$$

$$
\frac{\Delta \vdash \tau_{a}:: \star \quad \Delta ; \Gamma, x: \tau_{a} \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \lambda x: \tau_{a} . e_{b}: \tau_{a} \rightarrow \tau_{r}} \quad \frac{\Delta ; \Gamma \vdash e_{f}: \tau_{a} \rightarrow \tau_{r} \quad \Delta ; \Gamma \vdash e_{a}: \tau_{a}}{\Delta ; \Gamma \vdash e_{f} e_{a}: \tau_{r}}
$$

$$
\frac{\Delta, \alpha:: \kappa_{a} ; \Gamma \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \Lambda \alpha \cdot e_{b}: \forall \alpha:: \kappa_{a} \cdot \tau_{r}} \quad \frac{\Delta ; \Gamma \vdash e_{f}: \forall \alpha:: \kappa_{a} \cdot \tau_{r} \quad \Delta \vdash \tau_{a}:: \kappa_{a}}{\Delta ; \Gamma \vdash e_{f}\left[\tau_{a}\right]: \tau_{r}\left[\tau_{a} / \alpha\right]}
$$

$$
\frac{\Delta ; \Gamma \vdash e: \tau \quad \tau \equiv \tau^{\prime} \quad \Delta \vdash \tau^{\prime}:: \star}{\Delta ; \Gamma \vdash e: \tau^{\prime}}
$$

System F_{ω} : Type System, part 3

In the contexts $\boldsymbol{\Delta}$ and $\boldsymbol{\Gamma}$ the expression \boldsymbol{e} has type $\boldsymbol{\tau}$:

$$
\Delta ; \Gamma \vdash e: \tau
$$

$$
\overline{\Delta ; \Gamma \vdash c: \text { int }} \quad \frac{\Gamma(x)=\tau}{\Delta ; \Gamma \vdash x: \tau}
$$

$$
\frac{\Delta \vdash \tau_{a}:: \star \quad \Delta ; \Gamma, x: \tau_{a} \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \lambda x: \tau_{a} \cdot e_{b}: \tau_{a} \rightarrow \tau_{r}} \quad \frac{\Delta ; \Gamma \vdash e_{f}: \tau_{a} \rightarrow \tau_{r} \quad \Delta ; \Gamma \vdash e_{a}: \tau_{a}}{\Delta ; \Gamma \vdash e_{f} e_{a}: \tau_{r}}
$$

$$
\frac{\Delta, \alpha:: \kappa_{a} ; \Gamma \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \Lambda \alpha \cdot e_{b}: \forall \alpha:: \kappa_{a} \cdot \tau_{r}} \quad \frac{\Delta ; \Gamma \vdash e_{f}: \forall \alpha:: \kappa_{a} \cdot \tau_{r} \quad \Delta \vdash \tau_{a}:: \kappa_{a}}{\Delta ; \Gamma \vdash e_{f}\left[\tau_{a}\right]: \tau_{r}\left[\tau_{a} / \alpha\right]}
$$

$$
\frac{\Delta ; \Gamma \vdash e: \tau \quad \tau \equiv \tau^{\prime} \quad \Delta \vdash \tau^{\prime}:: \star}{\Delta ; \Gamma \vdash e: \tau^{\prime}}
$$

Syntax and type system easily extended with recursive and existential types.

Polymorphic List Library with higher-order \exists

List library is an existential package:

```
pack(\lambda\alpha::\star. \mu\xi::\star. unit + (\alpha*\xi), list_library)
as \existsL::\star # \star. {empty : }\forall\alpha::\star. L \alpha
    cons: }\forall\alpha::\star.\alpha->L\alpha->L\alpha
    unlist : }\forall\alpha::\star. L\alpha , unit + (\alpha*L\alpha)
    map : }\forall\alpha::\star. \forall\beta::\star. (\alpha->\beta)->L\alpha ->L \beta
    ...}
```

The witness type operator is poly.lists: $\lambda \alpha:: \star . \mu \xi:: \star$. unit $+(\alpha * \xi)$.
The existential type operator variable L represents poly. lists.
List operations are polymorphic in element type.
The map function only allows mapping $\boldsymbol{\alpha}$ lists to $\boldsymbol{\beta}$ lists.

Other Kinds of Kinds

Kinding systems for checking and tracking properties of type expressions:

- Record kinds
- records at the type-level; define systems of mutually recursive types
- Polymorphic kinds
- kind abstraction and application in types; System F "one level up"
- Dependent kinds
- dependent types "one level up"
- Row kinds
- describe "pieces" of record types for record polymorphism
- Power kinds
- alternative presentation of subtyping
- Singleton kinds
- formalize module systems with type sharing

Metatheory

System $\mathrm{F}_{\boldsymbol{\omega}}$ is type safe.

Metatheory

System $\mathrm{F}_{\boldsymbol{\omega}}$ is type safe.

- Preservation:

Induction on typing derivation, using substitution lemmas:

- Term Substitution:
if $\Delta_{1}, \Delta_{2} ; \Gamma_{1}, x: \tau_{x}, \Gamma_{2} \vdash e_{1}: \tau$ and $\Delta_{1} ; \Gamma_{1} \vdash e_{2}: \tau_{x}$, then $\Delta_{1}, \Delta_{2} ; \Gamma_{1}, \Gamma_{2} \vdash e_{1}\left[e_{2} / x\right]: \tau$.
- Type Substitution:
if $\Delta_{1}, \alpha:: \kappa_{\alpha}, \Delta_{2} \vdash \tau_{1}:: \kappa$ and $\Delta_{1} \vdash \tau_{2}:: \kappa_{\alpha}$, then $\Delta_{1}, \Delta_{2} \vdash \tau_{1}\left[\tau_{2} / \alpha\right]:: \kappa$.
- Type Substitution:
if $\tau_{1} \equiv \tau_{2}$, then $\tau_{1}[\tau / \alpha] \equiv \tau_{2}[\tau / \alpha]$.
- Type Substitution:
if $\Delta_{1}, \alpha:: \kappa_{\alpha}, \Delta_{2} ; \Gamma_{1}, \Gamma_{2} \vdash e_{1}: \tau$ and $\Delta_{1} \vdash \tau_{2}:: \kappa_{\alpha}$, then $\Delta_{1}, \Delta_{2} ; \Gamma_{1}, \Gamma_{2}\left[\tau_{2} / \alpha\right] \vdash e_{1}\left[\tau_{2} / \alpha\right]: \tau$.
- All straightforward inductions, using various weakening and exchange lemmas.

Metatheory

System $\mathrm{F}_{\boldsymbol{\omega}}$ is type safe.

- Progress:

Induction on typing derivation, using canonical form lemmas:

- If $\cdot ; \cdot \vdash v:$ int, then $v=c$.
- If $\cdot ; \cdot \vdash v: \tau_{a} \rightarrow \tau_{r}$, then $v=\lambda x: \tau_{a} . e_{b}$.
- If $\cdot ; \cdot \vdash v: \forall \alpha:: \kappa_{a} . \tau_{r}$, then $v=\Lambda \alpha:: \kappa_{a} . e_{b}$.
- Complicated by typing derivations that end with:

$$
\frac{\Delta ; \Gamma \vdash e: \tau \quad \tau \equiv \tau^{\prime} \quad \Delta \vdash \tau^{\prime}:: \star}{\Delta ; \Gamma \vdash e: \tau^{\prime}}
$$

(just like with subtyping and subsumption).

Definitional Equivalence and Parallel Reduction

Parallel Reduction of $\boldsymbol{\tau}$ to $\boldsymbol{\tau}^{\prime}$:
$\tau \Rightarrow \tau^{\prime}$

$$
\overline{\boldsymbol{\tau} \Rightarrow \boldsymbol{\tau}}
$$

$$
\begin{gathered}
\frac{\tau_{a 1} \Rightarrow \tau_{a 2} \quad \tau_{r 1} \Rightarrow \tau_{r 2}}{\tau_{a 1} \rightarrow \tau_{r 1} \Rightarrow \tau_{a 2} \rightarrow \tau_{r 2}} \\
\frac{\tau_{b 1} \Rightarrow \tau_{b 2}}{\lambda \alpha:: \kappa_{a} \cdot \tau_{b 1} \Rightarrow \lambda \alpha:: \kappa_{a} \cdot \tau_{b 2}}
\end{gathered}
$$

$$
\frac{\tau_{r 1} \Rightarrow \tau_{r 2}}{\forall \alpha:: \kappa_{a} \cdot \tau_{r 1} \Rightarrow \forall \alpha:: \kappa_{a} \cdot \tau_{r 2}}
$$

$$
\frac{\tau_{f 1} \Rightarrow \tau_{f 2} \quad \tau_{a 1} \Rightarrow \tau_{a 2}}{\tau_{f 1} \tau_{a 1} \Rightarrow \tau_{f 2} \tau_{a 2}}
$$

$$
\frac{\tau_{b} \Rightarrow \tau_{b}^{\prime} \quad \tau_{a} \Rightarrow \tau_{a}^{\prime}}{\left(\lambda \alpha:: \kappa_{a} \cdot \tau_{b}\right) \tau_{a} \Rightarrow \tau_{b}^{\prime}\left[\alpha / \tau_{a}^{\prime}\right]}
$$

A more "computational" relation.

Definitional Equivalence and Parallel Reduction

Key properties:

Definitional Equivalence and Parallel Reduction

Key properties:

- Transitive and symmetric closure of parallel reduction and type equivalence coincide:
- $\tau \Leftrightarrow^{*} \boldsymbol{\tau}^{\prime}$ iff $\tau \equiv \boldsymbol{\tau}^{\prime}$

Definitional Equivalence and Parallel Reduction

Key properties:

- Transitive and symmetric closure of parallel reduction and type equivalence coincide:
- $\tau \Leftrightarrow^{*} \tau^{\prime}$ iff $\tau \equiv \tau^{\prime}$
- Parallel reduction has the Church-Rosser property:
- If $\tau \nRightarrow^{*} \tau_{1}$ and $\tau \nRightarrow^{*} \tau_{2}$, then there exists τ^{\prime} such that $\tau_{1} \Rightarrow{ }^{*} \tau^{\prime}$ and $\tau_{2} \Rightarrow{ }^{*} \tau^{\prime}$

Definitional Equivalence and Parallel Reduction

Key properties:

- Transitive and symmetric closure of parallel reduction and type equivalence coincide:
- $\tau \Leftrightarrow^{*} \tau^{\prime}$ iff $\tau \equiv \tau^{\prime}$
- Parallel reduction has the Church-Rosser property:
- If $\tau \nRightarrow^{*} \tau_{1}$ and $\tau \nRightarrow^{*} \boldsymbol{\tau}_{2}$, then there exists τ^{\prime} such that $\tau_{1} \Rightarrow{ }^{*} \tau^{\prime}$ and $\tau_{2} \Rightarrow{ }^{*} \tau^{\prime}$
- Equivalent types share a common reduct:
- If $\tau_{1} \equiv \tau_{2}$, then there exists τ^{\prime} such that $\tau_{1} \Rightarrow{ }^{*} \tau^{\prime}$ and $\tau_{2} \Rightarrow{ }^{*} \tau^{\prime}$

Definitional Equivalence and Parallel Reduction

Key properties:

- Transitive and symmetric closure of parallel reduction and type equivalence coincide:
- $\tau \Leftrightarrow^{*} \tau^{\prime}$ iff $\tau \equiv \tau^{\prime}$
- Parallel reduction has the Church-Rosser property:
- If $\boldsymbol{\tau} \nRightarrow^{*} \boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau} \nRightarrow^{*} \boldsymbol{\tau}_{2}$, then there exists τ^{\prime} such that $\tau_{1} \Rightarrow{ }^{*} \tau^{\prime}$ and $\tau_{2} \Rightarrow{ }^{*} \tau^{\prime}$
- Equivalent types share a common reduct:
- If $\tau_{1} \equiv \tau_{2}$, then there exists τ^{\prime} such that $\tau_{1} \Rightarrow^{*} \tau^{\prime}$ and $\tau_{2} \Rightarrow^{*} \tau^{\prime}$
- Reduction preserves shapes:
- If int $\Rightarrow{ }^{*} \tau^{\prime}$, then $\tau^{\prime}=$ int
- If $\tau_{a} \rightarrow \tau_{r} \Rightarrow^{*} \tau^{\prime}$, then $\tau^{\prime}=\tau_{a}^{\prime} \rightarrow \tau_{r}^{\prime}$ and $\tau_{a} \Rightarrow^{*} \tau_{a}^{\prime}$ and $\tau_{r} \Rightarrow^{*} \tau_{r}^{\prime}$
- If $\forall \alpha:: \kappa_{a} . \tau_{r} \Rightarrow{ }^{*} \tau^{\prime}$, then $\tau^{\prime}=\forall \alpha:: \kappa_{a} . \tau_{r}^{\prime}$ and $\tau_{r} \Rightarrow^{*} \tau_{r}^{\prime}$

Canonical Forms

If $\cdot ; \cdot \vdash v: \tau_{a} \rightarrow \tau_{r}$, then $v=\lambda x: \tau_{a} \cdot e_{b}$.
Proof:
By cases on the form of \boldsymbol{v} :

Canonical Forms

If $\cdot ; \cdot \vdash v: \tau_{a} \rightarrow \tau_{r}$, then $v=\lambda x: \tau_{a} . e_{b}$.
Proof:
By cases on the form of \boldsymbol{v} :

- $v=\lambda x: \tau_{a} . e_{b}$.

We have that $\boldsymbol{v}=\lambda \boldsymbol{x}: \tau_{a} . e_{b}$.

Canonical Forms

If $\cdot ; \cdot \vdash v: \tau_{a} \rightarrow \tau_{r}$, then $v=\lambda x: \tau_{a} \cdot e_{b}$.
Proof:
By cases on the form of \boldsymbol{v} :

- $v=c$.

Derivation of $\cdot ; \cdot \vdash \boldsymbol{v}: \tau_{a} \rightarrow \tau_{r}$ must be of the form:

$$
\begin{gathered}
\frac{\cdot ; \cdot \vdash c: \text { int }}{} \quad \text { int } \equiv \tau_{1} \\
\cdot ; \cdot \vdash c: \tau_{1} \\
\vdots \\
\frac{; \cdot \vdash c: \tau_{n-1}}{} \quad \tau_{n-1} \equiv \tau_{n} \\
\cdot ; \cdot \vdash c: \tau_{a} \rightarrow \tau_{r}
\end{gathered} \tau_{n} \equiv \tau_{a} \rightarrow \tau_{r} .
$$

Therefore, we can construct the derivation int $\equiv \tau_{a} \rightarrow \tau_{r}$.
We can find a common reduct: int $\Rightarrow^{*} \tau^{\dagger}$ and $\tau_{a} \rightarrow \tau_{r} \Rightarrow^{*} \tau^{\dagger}$.
Reduction preserves shape: int $\Rightarrow^{*} \tau^{\dagger}$ implies $\tau^{\dagger}=$ int.
Reduction preserves shape: $\tau_{a} \rightarrow \tau_{r} \Rightarrow^{*} \tau^{\dagger}$ implies $\tau^{\dagger}=\tau_{a}^{\prime} \rightarrow \tau_{r}^{\prime}$. But, $\tau^{\dagger}=$ int and $\tau^{\dagger}=\tau_{a}^{\prime} \rightarrow \tau_{r}^{\prime}$ is a contradiction.

Canonical Forms

If $\cdot ; \cdot \vdash v: \tau_{a} \rightarrow \tau_{r}$, then $v=\lambda x: \tau_{a} . e_{b}$.
Proof:
By cases on the form of \boldsymbol{v} :

- v$=\Lambda \alpha:: \kappa_{a} . e_{b}$.

Derivation of $\cdot \boldsymbol{\cdot} \vdash \boldsymbol{v}: \tau_{a} \rightarrow \tau_{r}$ must be of the form:

$$
\begin{array}{cc}
\hline ; \cdot \vdash \Lambda \alpha:: \kappa_{a} \cdot e_{b}: \forall \alpha:: \kappa_{a} \cdot \tau_{z} \quad \forall \alpha:: \kappa_{a} \cdot \tau_{z} \equiv \tau_{1} \\
\hdashline ; \cdot \vdash \Lambda \alpha:: \kappa_{a} \cdot e_{b}: \tau_{1} \\
\vdots \\
\cdot ; \cdot \vdash \Lambda \alpha:: \kappa_{a} \cdot e_{b}: \tau_{n-1} & \\
\hline ; \cdot \vdash \Lambda \alpha:: \kappa_{a} \cdot e_{b}: \tau_{n} & \tau_{n-1} \equiv \tau_{n} \\
\cdot ; \cdot \vdash \Lambda \alpha:: \kappa_{a} \cdot e_{b}: \tau_{a} \rightarrow \tau_{r} & \tau_{n} \equiv \tau_{a} \rightarrow \tau_{r} \\
\hline
\end{array}
$$

Therefore, we can construct the derivation $\forall \alpha:: \kappa_{a} . \tau_{z} \equiv \tau_{a} \rightarrow \tau_{r}$.
We can find a common reduct: $\forall \alpha:: \kappa_{a} . \tau_{z} \Rightarrow{ }^{*} \tau^{\dagger}$ and $\tau_{a} \rightarrow \tau_{r} \Rightarrow^{*} \tau^{\dagger}$. Reduction preserves shape: $\forall \alpha:: \kappa_{a} \cdot \tau_{z} \Rightarrow^{*} \tau^{\dagger}$ implies $\tau^{\dagger}=\forall \alpha:: \kappa_{a} \cdot \tau_{z}^{\prime}$.
Reduction preserves shape: $\tau_{a} \rightarrow \tau_{r} \Rightarrow^{*} \tau^{\dagger}$ implies $\tau^{\dagger}=\tau_{a}^{\prime} \rightarrow \tau_{r}^{\prime}$.
But, $\tau^{\dagger}=\forall \alpha:: \kappa_{a} . \tau_{z}^{\prime}$ and $\tau^{\dagger}=\tau_{a}^{\prime} \rightarrow \tau_{r}^{\prime}$ is a contradiction.

Metatheory

System F_{ω} is type safe.
Where was the $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \boldsymbol{\kappa}$ judgement used in the proof?

Metatheory

System $\mathrm{F}_{\boldsymbol{\omega}}$ is type safe.
Where was the $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \boldsymbol{\kappa}$ judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

Metatheory

System $\mathrm{F}_{\boldsymbol{\omega}}$ is type safe.
Where was the $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \boldsymbol{\kappa}$ judgement used in the proof? In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural; but kinding is not required for type safety!

System F_{ω} without Kinds / System F with Type-Level Abstraction and Application

$$
\begin{array}{lll}
e & ::=c|x| \lambda x: \tau . e|e e| \Lambda \alpha . e \mid e[\tau] & \Gamma \\
v & ::=c|\lambda x: \tau . e| \Lambda \alpha . e & \quad \mid \Gamma, x: \tau \\
\tau & ::=\operatorname{int}|\tau \rightarrow \tau| \alpha|\forall \alpha . \tau| \lambda \alpha . \tau \mid \tau \tau & \Delta:=-\mid \Delta, \alpha
\end{array}
$$

System F_{ω} without Kinds / System F with Type-Level Abstraction and Application

$$
\begin{array}{lll}
e & ::=c|x| \lambda x: \tau . e|e e| \Lambda \alpha . e \mid e[\tau] & \Gamma \\
v & ::=c|\lambda x: \tau . e| \Lambda \alpha, e & \Delta \mid \Gamma, x: \tau \\
\tau & ::=\operatorname{int}|\tau \rightarrow \tau| \alpha|\forall \alpha . \tau| \lambda \alpha . \tau \mid \tau \tau & \Delta
\end{array}
$$

$$
e \rightarrow_{\mathrm{cbv}} e^{\prime}
$$

$$
\overline{\left(\lambda x: \tau . e_{b}\right) v_{a} \rightarrow_{\mathrm{cbv}} e_{b}\left[v_{a} / x\right]} \quad \frac{e_{f} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}}{e_{f} e_{a} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime} e_{a}} \quad \frac{e_{a} \rightarrow_{\mathrm{cbv}} e_{a}^{\prime}}{v_{f} e_{a} \rightarrow_{\mathrm{cbv}} v_{f} e_{a}^{\prime}}
$$

$$
\overline{\left(\Lambda \alpha . e_{b}\right)\left[\tau_{a}\right] \rightarrow_{\mathrm{cbv}} e_{b}\left[\tau_{a} / \alpha\right]}
$$

$$
\frac{e_{f} \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}}{e_{f}\left[\tau_{a}\right] \rightarrow_{\mathrm{cbv}} e_{f}^{\prime}\left[\tau_{a}\right]}
$$

System $\mathrm{F}_{\boldsymbol{\omega}}$ without Kinds / System F with Type-Level Abstraction and Application

$$
\begin{aligned}
e & ::=c|x| \lambda x: \tau . e|e e| \Lambda \alpha . e \mid e[\tau] & \Gamma & \quad:=-\mid \Gamma, x: \tau \\
v & ::=c|\lambda x: \tau . e| \Lambda \alpha, e & \Delta & ::=-\mid \Delta, \alpha \\
\tau & ::=\operatorname{int}|\tau \rightarrow \tau| \alpha|\forall \alpha . \tau| \lambda \alpha . \tau \mid \tau \tau & &
\end{aligned}
$$

```
\Delta\vdash\tau::\checkmark
```

$$
\begin{array}{r}
\overline{\Delta \vdash \text { int }:: \checkmark} \\
\frac{\alpha \in \Delta}{\Delta \vdash \alpha:: ~} \\
\frac{\Delta, \alpha \vdash \tau_{b}:: ~}{\Delta \vdash \lambda}
\end{array}
$$

$$
\frac{\Delta \vdash \tau_{a}:: \checkmark \quad \Delta \vdash \tau_{r}:: \checkmark}{\Delta \vdash \tau_{a} \rightarrow \tau_{r}:: \checkmark}
$$

$$
\frac{\Delta, \alpha \vdash \tau_{r}:: \checkmark}{\Delta \vdash \forall \alpha \cdot \tau_{r}:: \checkmark}
$$

$$
\frac{\Delta \vdash \tau_{f}:: \checkmark \quad \Delta \vdash \tau_{a}:: \checkmark}{\Delta \vdash \tau_{f} \tau_{a}:: \checkmark}
$$

Check that free type variables of $\boldsymbol{\tau}$ are in $\boldsymbol{\Delta}$, but nothing else.

System F_{ω} without Kinds / System F with Type-Level Abstraction and Application

$$
\begin{aligned}
e & ::=c|x| \lambda x: \tau . e|e e| \Lambda \alpha . e \mid e[\tau] & \Gamma & \quad:=-\mid \Gamma, x: \tau \\
v & ::=c|\lambda x: \tau . e| \Lambda \alpha, e & \Delta & ::=-\mid \Delta, \alpha \\
\tau & ::=\operatorname{int}|\tau \rightarrow \tau| \alpha|\forall \alpha . \tau| \lambda \alpha . \tau \mid \tau \tau & &
\end{aligned}
$$

$$
\tau \equiv \tau^{\prime}
$$

$$
\begin{array}{cc}
& \frac{\tau_{2} \equiv \tau_{1}}{\tau_{1} \equiv \tau_{2}}
\end{array} \quad \begin{gathered}
\tau_{1} \equiv \tau_{2} \\
\tau_{1} \equiv \tau_{2} \equiv \tau_{3} \\
\frac{\tau_{a 1} \equiv \tau_{a 2}}{\tau_{a 1} \rightarrow \tau_{r 1} \equiv \tau_{a 2} \equiv \tau_{r 2}} \\
\frac{\tau_{b 1} \equiv \tau_{r 2}}{\lambda \alpha \cdot \tau_{b 1} \equiv \lambda \alpha \cdot \tau_{b 2}}
\end{gathered}
$$

$$
\overline{\left(\lambda \alpha . \tau_{b}\right) \tau_{a} \equiv \tau_{b}\left[\alpha / \tau_{a}\right]}
$$

System F_{ω} without Kinds / System F with Type-Level Abstraction and Application

$$
\begin{aligned}
e & ::=c|x| \lambda x: \tau . e|e e| \Lambda \alpha . e \mid e[\tau] & \Gamma & \quad:=-\mid \Gamma, x: \tau \\
v & ::=c|\lambda x: \tau . e| \Lambda \alpha, e & \Delta & ::=-\mid \Delta, \alpha \\
\tau & ::=\operatorname{int}|\tau \rightarrow \tau| \alpha|\forall \alpha . \tau| \lambda \alpha . \tau \mid \tau \tau & &
\end{aligned}
$$

$\Delta ; \Gamma \vdash e: \tau$

$$
\frac{\Gamma(x)=\tau}{\Delta ; \Gamma \vdash x: \tau}
$$

$$
\frac{\Delta \vdash \tau_{a}:: \checkmark \quad \Delta ; \Gamma, x: \tau_{a} \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \lambda x: \tau_{a} \cdot e_{b}: \tau_{a} \rightarrow \tau_{r}} \quad \frac{\Delta ; \Gamma \vdash e_{f}: \tau_{a} \rightarrow \tau_{r} \quad \Delta ; \Gamma \vdash e_{a}: \tau_{a}}{\Delta ; \Gamma \vdash e_{f} e_{a}: \tau_{r}}
$$

$$
\frac{\Delta, \alpha ; \Gamma \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \Lambda \alpha . e_{b}: \forall \alpha . \tau_{r}} \quad \frac{\Delta ; \Gamma \vdash e_{f}: \forall \alpha . \tau_{r} \quad \Delta \vdash \tau_{a}:: \checkmark}{\Delta ; \Gamma \vdash e_{f}\left[\tau_{a}\right]: \tau_{r}\left[\tau_{a} / \alpha\right]}
$$

$$
\frac{\Delta ; \Gamma \vdash e: \tau \quad \tau \equiv \tau^{\prime}}{\Delta ; \Gamma \vdash e: \tau^{\prime}}
$$

System $\mathrm{F}_{\boldsymbol{\omega}}$ without Kinds / System F with Type-Level Abstraction and Application
This language is type safe.

System F_{ω} without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

- Preservation: Induction on typing derivation, using substitution lemmas:
- Term Substitution:
if $\Delta_{1}, \Delta_{2} ; \Gamma_{1}, x: \tau_{x}, \Gamma_{2} \vdash e_{1}: \tau$ and $\Delta_{1} ; \Gamma_{1} \vdash e_{2}: \tau_{x}$, then $\Delta_{1}, \Delta_{2} ; \Gamma_{1}, \Gamma_{2} \vdash e_{1}\left[e_{2} / x\right]: \tau$.
- Type Substitution:
if $\Delta_{1}, \alpha, \Delta_{2} \vdash \tau_{1}:: \checkmark$ and $\Delta_{1} \vdash \tau_{2}:: \checkmark$, then $\Delta_{1}, \Delta_{2} \vdash \tau_{1}\left[\tau_{2} / \alpha\right]:: \checkmark$.
- Type Substitution:
if $\tau_{1} \equiv \tau_{2}$, then $\tau_{1}[\tau / \alpha] \equiv \tau_{2}[\tau / \alpha]$.
- Type Substitution:
if $\Delta_{1}, \alpha, \Delta_{2} ; \Gamma_{1}, \Gamma_{2} \vdash e_{1}: \tau$ and $\Delta_{1} \vdash \tau_{2}:: \checkmark$, then $\Delta_{1}, \Delta_{2} ; \Gamma_{1}, \Gamma_{2}\left[\tau_{2} / \alpha\right] \vdash e_{1}\left[\tau_{2} / \alpha\right]: \tau$.
- All straightforward inductions, using various weakening and exchange lemmas.

System F_{ω} without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

- Progress:

Induction on typing derivation, using canonical form lemmas:

- If $\cdot \boldsymbol{;} \cdot \vdash v:$ int, then $v=c$.
- If $\cdot ; \cdot \vdash v: \tau_{a} \rightarrow \tau_{r}$, then $v=\lambda x: \tau_{a} . e_{b}$.
- If $\cdot ; \cdot \vdash v: \forall \alpha . \tau_{r}$, then $v=\Lambda \alpha . e_{b}$.
- Using parallel reduction relation.

Why Kinds?

Why aren't kinds required for type safety?

Why Kinds?

Why aren't kinds required for type safety?
Recall statement of type safety:
If $\cdot ; \cdot \vdash e: \tau$, then e does not get stuck.

Why Kinds?

Why aren't kinds required for type safety?
Recall statement of type safety:

$$
\text { If } \cdot ; \cdot \vdash e: \tau \text {, then } e \text { does not get stuck. }
$$

The typing derivation $\cdot ; \cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$ includes definitional-equivalence sub-derivations $\tau \equiv \tau^{\prime}$, which are explicit evidence that $\boldsymbol{\tau}$ and $\boldsymbol{\tau}^{\prime}$ are the same.

- E.g., to show that the "natural" type of the function expression in an application is equivalent to an arrow type:

$$
\begin{array}{cc}
\frac{\vdots}{\Delta ; \Gamma \vdash e_{f}: \tau_{f}} & \frac{\vdots}{\tau_{f} \equiv \tau_{a} \rightarrow \tau_{r}} \\
\Delta ; \Gamma \vdash e_{f}: \tau_{a} \rightarrow \tau_{r} & \frac{\vdots}{\Delta ; \Gamma \vdash e_{a}: \tau_{a}} \\
\Delta ; \Gamma \vdash e_{f} e_{a}: \tau_{r} &
\end{array}
$$

Why Kinds?

Why aren't kinds required for type safety?
Recall statement of type safety:

$$
\text { If } \cdot ; \cdot \vdash e: \tau \text {, then } e \text { does not get stuck. }
$$

The typing derivation $\cdot ; \cdot \vdash e: \tau$
includes definitional-equivalence sub-derivations $\tau \equiv \tau^{\prime}$, which are explicit evidence that $\boldsymbol{\tau}$ and $\boldsymbol{\tau}^{\prime}$ are the same.

Definitional equivalence ($\tau \equiv \tau^{\prime}$) and parallel reduction ($\tau \equiv \tau^{\prime}$) do not require well-kinded types (although they preserve the kinds of well-kinded types).

- E.g., $(\lambda \alpha . \alpha \rightarrow \alpha)($ int int $) \equiv($ int int $) \rightarrow($ int int $)$

Why Kinds?

Why aren't kinds required for type safety?
Recall statement of type safety:

$$
\text { If } \cdot ; \cdot \vdash e: \tau \text {, then } e \text { does not get stuck. }
$$

The typing derivation $\cdot ; \cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$ includes definitional-equivalence sub-derivations $\tau \equiv \tau^{\prime}$, which are explicit evidence that $\boldsymbol{\tau}$ and $\boldsymbol{\tau}^{\prime}$ are the same.

Definitional equivalence ($\tau \equiv \tau^{\prime}$) and parallel reduction ($\tau \equiv \tau^{\prime}$) do not require well-kinded types (although they preserve the kinds of well-kinded types).

Type (and kind) erasure means that "wrong/bad/meaningless" types do not affect run-time behavior.

- III-kinded types can't make well-typed terms get stuck.

Why Kinds?

Kinds aren't for type safety:

- Because a typing derivation (even with ill-kinded types), carries enough evidence to guarantee that expressions don't get stuck.

Why Kinds?

Kinds aren't for type safety:

- Because a typing derivation (even with ill-kinded types), carries enough evidence to guarantee that expressions don't get stuck.

Kinds are for type checking:

- Because programmers write programs, not typing derivations.
- Because type checkers are algorithms.

Why Kinds?

Kinds are for type checking:

- Because programmers write programs, not typing derivations.
- Because type checkers are algorithms.

Why Kinds?

Kinds are for type checking:

- Because programmers write programs, not typing derivations.
- Because type checkers are algorithms.

Recall the statement of type checking:
Given $\boldsymbol{\Delta}, \boldsymbol{\Gamma}$, and \boldsymbol{e}, does there exist $\boldsymbol{\tau}$ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.

Why Kinds?

Kinds are for type checking:

- Because programmers write programs, not typing derivations.
- Because type checkers are algorithms.

Recall the statement of type checking:
Given $\boldsymbol{\Delta}, \boldsymbol{\Gamma}$, and \boldsymbol{e}, does there exist $\boldsymbol{\tau}$ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.
Two issues:
$-\frac{\Delta ; \Gamma \vdash e: \tau \quad \tau \equiv \tau^{\prime} \quad \Delta \vdash \tau^{\prime}:: \star}{\Delta ; \Gamma \vdash e: \tau^{\prime}}$ is a non-syntax-directed rule

- $\tau \equiv \tau^{\prime}$ is a non-syntax-directed relation

One non-issue:

- $\Delta \vdash \tau:: \kappa$ is a syntax-directed relation (STLC "one level up")

Type Checking for System F_{ω}

Remove non-syntax-directed rules and relations:

```
\Delta;\Gamma\vdashe:\tau
```

$$
\overline{\Delta ; \Gamma \vdash c: \text { int }}
$$

$$
\frac{\Gamma(x)=\tau}{\Delta ; \Gamma \vdash x: \tau}
$$

$$
\frac{\Delta \vdash \tau_{a}:: \star \quad \Delta ; \Gamma, x: \tau_{a} \vdash e_{b}: \tau_{r}}{\Delta ; \Gamma \vdash \lambda x: \tau_{a} \cdot e_{b}: \tau_{a} \rightarrow \tau_{r}}
$$

$$
\Delta, \alpha:: \kappa_{a} ; \Gamma \vdash e_{b}: \tau_{r}
$$

$$
\overline{\Delta ; \Gamma \vdash \Lambda \alpha . e_{b}: \forall \alpha:: \kappa_{a} . \tau_{r}}
$$

$$
\begin{gathered}
\Delta ; \Gamma \vdash e_{f}: \tau_{f} \quad \tau_{f} \Rightarrow^{\Downarrow} \tau_{f}^{\prime} \quad \tau_{f}^{\prime}=\tau_{f a}^{\prime} \rightarrow \tau_{f r}^{\prime} \\
\Delta ; \Gamma \vdash e_{a}: \tau_{a} \quad \tau_{a} \Rightarrow{ }^{\Downarrow} \tau_{a}^{\prime} \quad \tau_{f a}^{\prime}=\tau_{a}^{\prime} \\
\Delta ; \Gamma \vdash e_{f} e_{a}: \tau_{f r}^{\prime} \\
\Delta ; \Gamma \vdash e_{f}: \tau_{f} \quad \tau_{f} \Rightarrow{ }^{\Downarrow} \tau_{f}^{\prime} \quad \tau_{f}^{\prime}=\forall \alpha:: \kappa_{f a} \cdot \tau_{f r} \\
\Delta \vdash \tau_{a}:: \kappa_{a} \quad \kappa_{f a}=\kappa_{a} \\
\Delta ; \Gamma \vdash e_{f}\left[\tau_{a}\right]: \tau_{f r}\left[\tau_{a} / \alpha\right]
\end{gathered}
$$

Type Checking for System F_{ω}

Kinds are for type checking.
Given $\boldsymbol{\Delta}, \boldsymbol{\Gamma}$, and \boldsymbol{e}, does there exist $\boldsymbol{\tau}$ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.

Metatheory for kind system:

Type Checking for System F_{ω}

Kinds are for type checking.
Given $\boldsymbol{\Delta}, \boldsymbol{\Gamma}$, and e, does there exist $\boldsymbol{\tau}$ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.

Metatheory for kind system:

- Well-kinded types don't get stuck.
- If $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \kappa$ and $\tau \nRightarrow^{*} \boldsymbol{\tau}^{\prime}$, then either τ^{\prime} is in (weak-head) normal form (i.e., a type-level "value") or $\boldsymbol{\tau}^{\prime} \Rightarrow \boldsymbol{\tau}^{\prime \prime}$.
- Proofs by Progress and Preservation on kinding and parallel reduction derivations.

Type Checking for System F_{ω}

Kinds are for type checking.
Given $\boldsymbol{\Delta}, \Gamma$, and e, does there exist τ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \boldsymbol{e}: \boldsymbol{\tau}$.

Metatheory for kind system:

- Well-kinded types don't get stuck.
- If $\Delta \vdash \tau:: \kappa$ and $\tau \nRightarrow^{*} \tau^{\prime}$, then either $\boldsymbol{\tau}^{\prime}$ is in (weak-head) normal form (i.e., a type-level "value") or $\tau^{\prime} \Rightarrow \tau^{\prime \prime}$.
- Proofs by Progress and Preservation on kinding and parallel reduction derivations.
- But, irrelevant for type checking of expressions. If $\tau_{f} \Rightarrow^{*} \tau_{f}^{\prime}$ "gets stuck" at a type τ_{f}^{\prime} that is not an arrow type, then the application typing rule does not apply and a typing derivation does not exist.

Type Checking for System F_{ω}

Kinds are for type checking.
Given $\boldsymbol{\Delta}, \boldsymbol{\Gamma}$, and e, does there exist $\boldsymbol{\tau}$ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.

Metatheory for kind system:

- Well-kinded types don't get stuck.
- If $\Delta \vdash \tau:: \kappa$ and $\tau \nRightarrow^{*} \tau^{\prime}$, then either τ^{\prime} is in (weak-head) normal form (i.e., a type-level "value") or $\tau^{\prime} \Rightarrow \tau^{\prime \prime}$.
- But, irrelevant for type checking of expressions.

Type Checking for System F_{ω}

Kinds are for type checking.
Given $\boldsymbol{\Delta}, \boldsymbol{\Gamma}$, and \boldsymbol{e}, does there exist $\boldsymbol{\tau}$ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.

Metatheory for kind system:

- Well-kinded types don't get stuck.
- If $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \kappa$ and $\tau \nRightarrow^{*} \tau^{\prime}$, then either τ^{\prime} is in (weak-head) normal form (i.e., a type-level "value") or $\tau^{\prime} \Rightarrow \tau^{\prime \prime}$.
- But, irrelevant for type checking of expressions.
- Well-kinded types terminate.
- If $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \kappa$, then there exists τ^{\prime} such that $\boldsymbol{\tau} \Rightarrow{ }^{\Downarrow} \boldsymbol{\tau}^{\prime}$.
- Proof is similar to that of termination of STLC.

Type Checking for System F_{ω}

Kinds are for type checking.
Given $\boldsymbol{\Delta}, \boldsymbol{\Gamma}$, and e, does there exist $\boldsymbol{\tau}$ such that $\boldsymbol{\Delta} ; \boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.

Metatheory for kind system:

- Well-kinded types don't get stuck.
- If $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \kappa$ and $\tau \nRightarrow^{*} \tau^{\prime}$, then either τ^{\prime} is in (weak-head) normal form (i.e., a type-level "value") or $\tau^{\prime} \Rightarrow \tau^{\prime \prime}$.
- But, irrelevant for type checking of expressions.
- Well-kinded types terminate.
- If $\boldsymbol{\Delta} \vdash \boldsymbol{\tau}:: \boldsymbol{\kappa}$, then there exists τ^{\prime} such that $\boldsymbol{\tau} \Rightarrow{ }^{\Downarrow} \boldsymbol{\tau}^{\prime}$.
- Proof is similar to that of termination of STLC.

Type checking for System F_{ω} is decidable.

Going Further

This is just the tip of an iceberg.

- Pure type systems
- Why stop at three levels of expressions (terms, types, and kinds)?
- Allow abstraction and application at the level of kinds, and introduce sorts to classify kinds.
- Why stop at four levels of expressions?
- "For programming languages, however, three levels have proved sufficient."

