CSE-505: Programming Languages

Lecture 27 — Higher-Order Polymorphism

Matthew Fluet 2016

Looking back, looking forward

Have defined System F.

- Metatheory (what properties does it have)
- What (else) is it good for
- ► How/why ML is more restrictive and implicit
- Recursive types (also use type variables, but differently)
- Existential types (dual to universal types)

Next:

Type operators and type-level "computations"

System F with Recursive and Existential Types

$$\begin{array}{ll} e & ::= & c \mid x \mid \lambda x : \tau. \ e \mid e \ e \mid \\ & \Lambda \alpha. \ e \mid e \mid \tau \mid \mid \\ & \text{pack}_{\exists \alpha. \ \tau}(\tau, e) \mid \text{unpack} \ e \ \text{as} \ (\alpha, x) \ \text{in} \ e \mid \\ & \text{roll}_{\mu \alpha. \ \tau}(e) \mid \text{unroll}(e) \\ v & ::= & c \mid \lambda x : \tau. \ e \mid \Lambda \alpha. \ e \mid \text{pack}_{\exists \alpha. \ \tau}(\tau, v) \mid \text{roll}_{\mu \alpha. \ \tau}(v) \end{array}$$

 $e \rightarrow_{cbv} e'$

$$\frac{e_f \to_{\text{cbv}} e_f'}{(\lambda x : \tau . e_b) \ v_a \to_{\text{cbv}} e_b[v_a/x]} \qquad \frac{e_f \to_{\text{cbv}} e_f'}{e_f \ e_a \to_{\text{cbv}} e_f' e_a} \qquad \frac{e_a \to_{\text{cbv}} e_a'}{v_f \ e_a \to_{\text{cbv}} v_f \ e_a'}$$

$$\frac{e_f \to_{\text{cbv}} e_f'}{e_f \ [\tau_a] \to_{\text{cbv}} e_f' [\tau_a]} \qquad \frac{e_f \to_{\text{cbv}} e_f'}{e_f \ [\tau_a] \to_{\text{cbv}} e_f' [\tau_a]}$$

$$\frac{e_a \to_{\text{cbv}} e_a'}{\text{pack}_{\exists \alpha . \tau} (\tau_w, e_a) \to_{\text{cbv}} \text{pack}_{\exists \alpha . \tau} (\tau_w, e_a')}$$

$$\frac{e_a \to_{\text{cbv}} e_a'}{\text{unpack} \ e_a \ as} \ (\alpha, x) \ \text{in} \ e_b \to_{\text{cbv}} \text{unpack} \ e_a' \ as} \ (\alpha, x) \ \text{in} \ e_b$$

$$\frac{e_a \to_{\text{cbv}} e_a'}{\text{unpack} \ pack}_{\exists \alpha . \tau} (\tau_w, v_a) \ \text{as}} \ (\alpha, x) \ \text{in} \ e_b \to_{\text{cbv}} e_b[\tau_w/\alpha][v_a/x]}$$

$$\frac{e_a \to_{\text{cbv}} e_a'}{\text{unroll}(e_a) \to_{\text{cbv}} unroll(e_f')} \qquad \text{unroll}(\text{roll}_{\mu \alpha, \tau} (v_a)) \to_{\text{cbv}} v_a}$$

System F with Recursive and Existential Types

$$\begin{array}{lll} \tau & ::= & \inf \mid \tau \rightarrow \tau \mid \alpha \mid \forall \alpha. \; \tau \mid \exists \alpha. \; \tau \mid \mu \alpha. \; \tau \\ \Delta & ::= & \cdot \mid \Delta, \alpha \\ \Gamma & ::= & \cdot \mid \Gamma, x{:}\tau \end{array}$$

$$\Delta;\Gamma \vdash e: au$$

$$\frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash c : \mathsf{int}}$$

$$\frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash x : \tau}$$

$$\frac{\Delta \vdash \tau_a \quad \Delta; \Gamma, x : \tau_a \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \lambda x : \tau_a \cdot e_b : \tau_a \rightarrow \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_f : \tau_a \rightarrow \tau_r \quad \Delta; \Gamma \vdash e_a : \tau_a}{\Delta; \Gamma \vdash e_f \cdot e_a : \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \Lambda \alpha \cdot e_b : \forall \alpha \cdot \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_f : \forall \alpha \cdot \tau_r \quad \Delta \vdash \tau_a}{\Delta; \Gamma \vdash e_f \cdot \tau_a \mid \tau_r \mid \tau_a \mid \tau_a \mid}$$

$$\frac{\Delta; \Gamma \vdash e_a : \tau_r \mid \tau_a \mid \tau_a \mid}{\Delta; \Gamma \vdash \mathsf{pack}_{\exists \alpha \cdot \tau} \quad \tau_r \mid \tau_a \mid \tau_r \mid}$$

$$\frac{\Delta; \Gamma \vdash e_a : \exists \alpha \cdot \tau \quad \Delta, \alpha; \Gamma, x : \tau \vdash e_b : \tau_r \quad \Delta \vdash \tau_r \mid}{\Delta; \Gamma \vdash \mathsf{unpack} \cdot e_a \cdot \mathsf{s} \quad (\alpha, x) \; \mathsf{in} \cdot e_b : \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_a : \tau_r \mid}{\Delta; \Gamma \vdash \mathsf{unpack} \cdot e_a \cdot \mathsf{s} \quad (\alpha, x) \; \mathsf{in} \cdot e_b : \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_a : \tau_r \mid}{\Delta; \Gamma \vdash \mathsf{unpack} \cdot e_a \cdot \mathsf{s} \quad (\alpha, x) \; \mathsf{in} \cdot e_b : \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_a : \tau_r \mid}{\Delta; \Gamma \vdash \mathsf{unpack} \cdot e_a \cdot \mathsf{s} \quad (\alpha, x) \; \mathsf{in} \cdot e_b : \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_a : \tau_r \mid}{\Delta; \Gamma \vdash \mathsf{unpack} \cdot e_a \cdot \mathsf{s} \quad (\alpha, x) \; \mathsf{in} \cdot e_b : \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_a : \tau_r \mid}{\Delta; \Gamma \vdash \mathsf{unpack} \cdot e_a \cdot \mathsf{s} \quad (\alpha, x) \; \mathsf{in} \cdot e_b : \tau_r}$$

Goal

Understand what this interface means and why it matters:

```
type 'a list
val empty : 'a list
val cons : 'a -> 'a list -> 'a list
val unlist : 'a list -> ('a * 'a list) option
val size : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
```

Story so far:

- Recursive types to define list data structure
- Universal types to keep element type abstract in library
- Existential types to keep list type abstract in client

But, "cheated" when abstracting the list type in client: considered just intlist.

(Integer) List Library with ∃

List library is an existential package:

```
\begin{array}{l} \operatorname{pack}(\mu\xi.\ \operatorname{unit} + (\operatorname{int}*\xi), list\_library) \\ \operatorname{as}\ \exists L.\ \{\operatorname{empty}: L; \\ \operatorname{cons}: \operatorname{int} \to L \to L; \\ \operatorname{unlist}: L \to \operatorname{unit} + (\operatorname{int}*L); \\ \operatorname{map}: (\operatorname{int} \to \operatorname{int}) \to L \to L; \\ \ldots \} \end{array}
```

The witness type is integer lists: $\mu \xi$. unit + (int * ξ).

The existential type variable L represents integer lists.

List operations are monomorphic in element type (int).

The map function only allows mapping integer lists to integer lists.

(Polymorphic?) List Library with \forall/\exists

List library is a type abstraction that yields an existential package:

$$egin{aligned} \Lambda lpha. & \operatorname{pack}(\mu \xi. \ \operatorname{unit} + (lpha * \xi), list_library) \ & \operatorname{as} \ \exists L. \ \{\operatorname{empty} : L; \ & \operatorname{cons} : lpha
ightarrow L
ightarrow L; \ & \operatorname{unlist} : L
ightarrow \operatorname{unit} + (lpha * L); \ & \operatorname{map} : (lpha
ightarrow lpha)
ightarrow L
ightarrow L; \ & \ldots \} \end{aligned}$$

The witness type is α lists: $\mu \xi$ unit $+ (\alpha * \xi)$.

The existential type variable L represents lpha lists.

List operations are monomorphic in element type (α) .

The **map** function only allows mapping α lists to α lists.

Type Abbreviations and Type Operators

Reasonable enough to provide list type as a (parametric) type abbreviation:

$$\mathsf{L} \; \alpha \; = \; \mu \xi. \; \mathsf{unit} + (\alpha * \xi)$$

replace occurrences of L τ in programs with $(\mu \xi. \text{ unit } + (\alpha * \xi))[\tau/\alpha]$

Gives an informal notion of functions at the type-level.

But, doesn't help with with list library, because this exposes the definition of list type.

▶ How "modular" and "safe" are libraries built from cpp macros?

Type Abbreviations and Type Operators

Instead, provide list type as a type operator.

a function from types to types

$$L = \lambda \alpha. \ \mu \xi. \ unit + (\alpha * \xi)$$

Gives a formal notion of functions at the type-level.

- abstraction and application at the type-level
- equivalence of type-level expressions
- well-formedness of type-level expressions

List library will be an existential package that hides a *type operator*, (rather than a *type*).

Abstraction and application at the type level makes it possible to write the *same* type with *different* syntax.

Abstraction and application at the type level makes it possible to write the *same* type with *different* syntax.

Require a precise definition of when two types are the same:

 $\Delta ; \Gamma \vdash e : \tau$

Abstraction and application at the type level makes it possible to write the *same* type with *different* syntax.

Require a typing rule to exploit types that are the same:

Abstraction and application at the type level makes it possible to write the *same* type with *different* syntax.

Admits "wrong/bad/meaningless" types:

... bool int (Id bool) int bool (Id int) ...

Abstraction and application at the type level makes it possible to write the *same* type with *different* syntax.

Require a "type system" for types:

```
\begin{array}{lll} \text{Terms:} & e & ::= & c \mid x \mid \lambda x : \tau. \; e \mid e \; e \mid \Lambda \alpha :: \kappa. \; e \mid e \; [\tau] \\ v & ::= & c \mid \lambda x : \tau. \; e \mid \Lambda \alpha :: \kappa. \; e \end{array}
```

- ▶ atomic values (e.g., e) and operations (e.g., e + e)
- \triangleright compound values (e.g., (v,v)) and operations (e.g., e.1)
- value abstraction and application
- type abstraction and application
- classified by types (but not all terms have a type)

```
\begin{array}{lll} \text{Terms:} & e & ::= & c \mid x \mid \lambda x : \tau. \; e \mid e \; e \mid \Lambda \alpha :: \kappa. \; e \mid e \; [\tau] \\ v & ::= & c \mid \lambda x : \tau. \; e \mid \Lambda \alpha :: \kappa. \; e \end{array}
```

- ▶ atomic values (e.g., c) and operations (e.g., e + e)
- \triangleright compound values (e.g., (v,v)) and operations (e.g., e.1)
- value abstraction and application
- type abstraction and application
- classified by types (but not all terms have a type)

Types:
$$\tau$$
 ::= int $|\tau \to \tau| \alpha | \forall \alpha :: \kappa. \tau | \lambda \alpha :: \kappa. \tau | \tau \tau$

- ▶ atomic types (e.g., int) classify the terms that evaluate to atomic values
- **compound types** (e.g., $\tau * \tau$) classify the terms that evaluate to compound values
- ightharpoonup function types au o au classify the terms that evaluate to value abstractions
- ightharpoonup universal types $\forall \alpha. \ au$ classify the terms that evaluate to type abstractions
- type abstraction and application
 - type abstractions do not classify terms, but can be applied to type arguments to form types that do classify terms
- classified by kinds (but not all types have a kind)

```
Types: \tau ::= int | \tau \rightarrow \tau | \alpha | \forall \alpha :: \kappa. \ \tau | \lambda \alpha :: \kappa. \ \tau | \tau \tau
```

- atomic types (e.g., int) classify the terms that evaluate to atomic values
- ightharpoonup compound types (e.g., au * au) classify the terms that evaluate to compound values
- function types au o au classify the terms that evaluate to value abstractions
- universal types $\forall \alpha$. τ classify the terms that evaluate to type abstractions
- type abstraction and application
 - type abstractions do not classify terms, but can be applied to type arguments to form types that do classify terms
- classified by kinds (but not all types have a kind)

```
Types: \tau ::= int | \tau \rightarrow \tau | \alpha | \forall \alpha :: \kappa . \tau | \lambda \alpha :: \kappa . \tau | \tau \tau
```

- atomic types (e.g., int) classify the terms that evaluate to atomic values
- \triangleright compound types (e.g., $\tau * \tau$) classify the terms that evaluate to compound values
- lacktriangleright function types au
 ightarrow au classify the terms that evaluate to value abstractions
- universal types $\forall \alpha$. τ classify the terms that evaluate to type abstractions
- type abstraction and application
 - type abstractions do not classify terms, but can be applied to type arguments to form types that do classify terms
- classified by kinds (but not all types have a kind)

Kinds
$$\kappa ::= \star \mid \kappa \Rightarrow \kappa$$

- kind of proper types * classify the types (that are the same as the types) that classify terms
- ightharpoonup arrow kinds $\kappa\Rightarrow\kappa$ classify the types (that are the same as the types) that are type abstractions

- *
 - ▶ the kind of proper types
 - ▶ Bool, Bool → Bool, . . .

- *
 - the kind of proper types
 - $\blacktriangleright \ \mathsf{Bool}, \ \mathsf{Bool} \to \mathsf{Bool}, \ \dots$
- \blacktriangleright $\star \Rightarrow \star$
 - ▶ the kind of (unary) type operators
 - List, Maybe, ...

- *
 - the kind of proper types
 - ▶ Bool, Bool → Bool, Maybe Bool, Maybe Bool → Maybe Bool, . . .
- $\star \Rightarrow \star$
 - ▶ the kind of (unary) type operators
 - List, Maybe, ...

- **▶** ★
 - the kind of proper types
 - ▶ Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \rightarrow \star \Rightarrow \star
 - ▶ the kind of (unary) type operators
 - List, Maybe, ...
- \blacktriangleright $\star \Rightarrow \star \Rightarrow \star$
 - the kind of (binary) type operators
 - ► Either, Map, ...

- **▶** ★
 - the kind of proper types
 - ▶ Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \rightarrow \star \Rightarrow \star
 - ▶ the kind of (unary) type operators
 - List, Maybe, Map Int, Either (List Bool), ...
- $\blacktriangleright \star \Rightarrow \star \Rightarrow \star$
 - the kind of (binary) type operators
 - ► Either, Map, ...

- *
 - the kind of proper types
 - ▶ Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \blacktriangleright $\star \Rightarrow \star$
 - ▶ the kind of (unary) type operators
 - List, Maybe, Map Int, Either (List Bool), ...
- $\blacktriangleright \star \Rightarrow \star \Rightarrow \star$
 - ▶ the kind of (binary) type operators
 - ► Either, Map, ...
- $\blacktriangleright \ (\star \Rightarrow \star) \Rightarrow \star$
 - the kind of higher-order type operators taking unary type operators to proper types
 - **▶** ???, . . .

- **▶** ★
 - the kind of proper types
 - ▶ Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \rightarrow \star \Rightarrow \star
 - ▶ the kind of (unary) type operators
 - List, Maybe, Map Int, Either (List Bool), ...
- $\blacktriangleright \star \Rightarrow \star \Rightarrow \star$
 - the kind of (binary) type operators
 - ► Either, Map, ...
- - the kind of higher-order type operators taking unary type operators to proper types
 - ▶ ???, ...
- - the kind of higher-order type operators taking unary type operators to unary type operators
 - ▶ MaybeT, ListT, . . .

- *
 - the kind of proper types
 - **b** Bool, Bool \rightarrow Bool, Maybe Bool, Maybe Bool \rightarrow Maybe Bool, ...
- \rightarrow \star \Rightarrow \star
 - ▶ the kind of (unary) type operators
 - ▶ List, Maybe, Map Int, Either (List Bool), ListT Maybe, ...
- $\star \Rightarrow \star \Rightarrow \star$
 - ▶ the kind of (binary) type operators
 - ► Either, Map, ...
- - the kind of higher-order type operators taking unary type operators to proper types
 - **▶** ???, ...
- - the kind of higher-order type operators taking unary type operators to unary type operators
 - MaybeT, ListT, ...

System F_{ω} : Syntax

```
\begin{array}{lll} e & ::= & c \mid x \mid \lambda x : \tau. \ e \mid e \ e \mid \Lambda \alpha ::\kappa. \ e \mid e \ [\tau] \\ v & ::= & c \mid \lambda x : \tau. \ e \mid \Lambda \alpha ::\kappa. \ e \\ \Gamma & ::= & \cdot \mid \Gamma, x : \tau \\ \tau & ::= & \inf \mid \tau \to \tau \mid \alpha \mid \forall \alpha ::\kappa. \ \tau \mid \lambda \alpha ::\kappa. \ \tau \mid \tau \ \tau \\ \Delta & ::= & \cdot \mid \Delta, \alpha ::\kappa \\ \kappa & ::= & \star \mid \kappa \Rightarrow \kappa \end{array}
```

New things:

- Types: type abstraction and type application
- Kinds: the "types" of types
 - ▶ ★: kind of proper types
 - $\kappa_a \Rightarrow \kappa_r$: kind of type operators

System F_{ω} : Operational Semantics

Small-step, call-by-value (CBV), left-to-right operational semantics:

$$e
ightarrow_{\mathsf{cbv}} e'$$

$$\frac{e_f \to_{\mathsf{CbV}} e_f'}{(\lambda x \colon \tau \colon e_b) \ v_a \to_{\mathsf{CbV}} e_b[v_a/x]} \qquad \frac{e_f \to_{\mathsf{CbV}} e_f'}{e_f \ e_a \to_{\mathsf{CbV}} e_f' \ e_a}$$

$$\frac{e_a \to_{\mathsf{CbV}} e_a'}{v_f \ e_a \to_{\mathsf{CbV}} v_f \ e_a'} \qquad \frac{(\Lambda \alpha :: \kappa_a \colon e_b) \ [\tau_a] \to_{\mathsf{CbV}} e_b[\tau_a/\alpha]}{e_f \to_{\mathsf{CbV}} e_f'}$$

$$\frac{e_f \to_{\mathsf{CbV}} e_f'}{e_f \ [\tau_a] \to_{\mathsf{CbV}} e_f' \ [\tau_a]}$$

▶ *Unchanged!* All of the new action is at the type-level.

In the context Δ the type au has kind κ :

$$\Delta \vdash \tau :: \kappa$$

$$\frac{\Delta(\alpha) = \kappa}{\Delta \vdash \alpha :: \kappa}$$

 $\Delta \vdash \text{int} :: \star$

$$\frac{\Delta, \alpha :: \kappa_a \vdash \tau_b :: \kappa_r}{\Delta \vdash \lambda \alpha :: \kappa_a . \ \tau_b :: \kappa_a \Rightarrow \kappa_r}$$

$$\frac{\Delta \vdash \tau_a :: \star \qquad \Delta \vdash \tau_r :: \star}{\Delta \vdash \tau_a \to \tau_r :: \star}$$

$$\frac{\Delta, \alpha :: \kappa_a \vdash \tau_r :: \star}{\Delta \vdash \forall \alpha :: \kappa_a. \ \tau_r :: \star}$$

$$\frac{\Delta \vdash \tau_f :: \kappa_a \Rightarrow \kappa_r \quad \Delta \vdash \tau_a :: \kappa_a}{\Delta \vdash \tau_f \ \tau_a :: \kappa_r}$$

Should look familiar:

In the context Δ the type au has kind κ :

$$\Delta \vdash \tau :: \kappa$$

Should look familiar:

the typing rules of the Simply-Typed Lambda Calculus "one level up"

Definitional Equivalence of τ and τ' :

$$\tau \equiv \tau'$$

$$\frac{\tau_{2} \equiv \tau_{1}}{\tau \equiv \tau} \qquad \frac{\tau_{2} \equiv \tau_{1}}{\tau_{1} \equiv \tau_{2}} \qquad \frac{\tau_{1} \equiv \tau_{2} \qquad \tau_{2} \equiv \tau_{3}}{\tau_{1} \equiv \tau_{3}}$$

$$\frac{\tau_{a1} \equiv \tau_{a2} \qquad \tau_{r1} \equiv \tau_{r2}}{\tau_{a1} \rightarrow \tau_{r1} \equiv \tau_{a2} \rightarrow \tau_{r2}} \qquad \frac{\tau_{r1} \equiv \tau_{r2}}{\forall \alpha :: \kappa_{a}. \ \tau_{r1} \equiv \forall \alpha :: \kappa_{a}. \ \tau_{r2}}$$

$$\frac{\tau_{b1} \equiv \tau_{b2}}{\lambda \alpha :: \kappa_{a}. \ \tau_{b1} \equiv \lambda \alpha :: \kappa_{a}. \ \tau_{b2}} \qquad \frac{\tau_{f1} \equiv \tau_{f2} \qquad \tau_{a1} \equiv \tau_{a2}}{\tau_{f1} \ \tau_{a1} \equiv \tau_{f2} \ \tau_{a2}}$$

$$\frac{(\lambda \alpha :: \kappa_{a}. \ \tau_{b}) \ \tau_{a} \equiv \tau_{b} [\alpha / \tau_{a}]}{\tau_{b} [\alpha / \tau_{a}]}$$

Should look familiar:

Definitional Equivalence of τ and τ' :

$$au \equiv au'$$

$$\frac{\tau_{2} \equiv \tau_{1}}{\tau \equiv \tau} \qquad \frac{\tau_{2} \equiv \tau_{1}}{\tau_{1} \equiv \tau_{2}} \qquad \frac{\tau_{1} \equiv \tau_{2} \qquad \tau_{2} \equiv \tau_{3}}{\tau_{1} \equiv \tau_{3}}$$

$$\frac{\tau_{a1} \equiv \tau_{a2} \qquad \tau_{r1} \equiv \tau_{r2}}{\tau_{a1} \rightarrow \tau_{r1} \equiv \tau_{a2} \rightarrow \tau_{r2}} \qquad \frac{\tau_{r1} \equiv \tau_{r2}}{\forall \alpha :: \kappa_{a}. \ \tau_{r1} \equiv \forall \alpha :: \kappa_{a}. \ \tau_{r2}}$$

$$\frac{\tau_{b1} \equiv \tau_{b2}}{\lambda \alpha :: \kappa_{a}. \ \tau_{b1} \equiv \lambda \alpha :: \kappa_{a}. \ \tau_{b2}} \qquad \frac{\tau_{f1} \equiv \tau_{f2} \qquad \tau_{a1} \equiv \tau_{a2}}{\tau_{f1} \ \tau_{a1} \equiv \tau_{f2} \ \tau_{a2}}$$

$$\frac{(\lambda \alpha :: \kappa_{a}. \ \tau_{b}) \ \tau_{a} \equiv \tau_{b} [\alpha / \tau_{a}]}{(\lambda \alpha :: \kappa_{a}. \ \tau_{b}) \ \tau_{a} \equiv \tau_{b} [\alpha / \tau_{a}]}$$

Should look familiar:

the full reduction rules of the Lambda Calculus "one level up"

In the contexts Δ and Γ the expression e has type τ :

$$\boldsymbol{\Delta};\Gamma \vdash e:\tau$$

$$\frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash c : \mathsf{int}}$$

$$\frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash x : \tau}$$

$$\frac{\Delta \vdash \tau_a :: \star \quad \Delta; \Gamma, x : \tau_a \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \lambda x : \tau_a \cdot e_b : \tau_a \rightarrow \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_f : \tau_a \rightarrow \tau_r \quad \Delta; \Gamma \vdash e_a : \tau_a}{\Delta; \Gamma \vdash e_b : \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_f : \forall \alpha :: \kappa_a : \Gamma \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \alpha \cdot e_b : \forall \alpha :: \kappa_a \cdot \tau_r}$$

$$\frac{\Delta; \Gamma \vdash e_f : \forall \alpha :: \kappa_a \cdot \tau_r \quad \Delta \vdash \tau_a :: \kappa_a}{\Delta; \Gamma \vdash e_f [\tau_a] : \tau_r [\tau_a/\alpha]}$$

$$\frac{\Delta; \Gamma \vdash e : \tau}{\Delta; \Gamma \vdash e : \tau'}$$

$$\frac{\Delta \vdash \tau_a :: \kappa_a}{\Delta; \Gamma \vdash e_f : \tau'}$$

In the contexts Δ and Γ the expression e has type τ :

$$\begin{array}{c} \boxed{\Delta;\Gamma\vdash e:\tau} \\ \hline\\ \hline\\ \Delta;\Gamma\vdash c:\mathsf{int} \\ \hline\\ \hline\\ \Delta;\Gamma\vdash c:\mathsf{int} \\ \hline\\ \hline\\ \Delta;\Gamma\vdash x:\tau \\ \hline\\ \hline\\ \Delta;\Gamma\vdash \lambda x:\tau_a.\ e_b:\tau_a\to\tau_r \\ \hline\\ \Delta;\Gamma\vdash e_b:\tau_r \\ \hline\\ \Delta;\Gamma\vdash A\alpha.\ e_b:\forall\alpha::\kappa_a.\ \tau_r \\ \hline\\ \Delta;\Gamma\vdash e:\tau \\ \hline\\ \Delta;\Gamma\vdash e:\tau \\ \hline\\ \Delta;\Gamma\vdash e:\tau' \\ \hline\\ \Delta;\Gamma\vdash e:\tau' \\ \hline\\ \Delta\vdash \tau_a::\kappa_a \\ \hline\\ \Delta;\Gamma\vdash e_a:\tau_a \\ \hline\\ \Delta;\Gamma\vdash e_f:\tau_a\to\tau_r \\ \hline\\ \Delta;\Gamma\vdash e_f:\tau_a::\kappa_a \\ \hline\\ \Delta;\Gamma\vdash e:\tau' \\ \hline\\ \Delta\vdash \tau_a::\kappa_a \\ \hline\\ \Delta;\Gamma\vdash e:\tau' \\ \hline\\ \hline\\ \Delta\vdash \tau_a::\kappa_a \\ \hline\\ \Delta;\Gamma\vdash e:\tau' \\ \hline\\ \hline\\ \Delta\vdash \tau_a::\kappa_a \\ \hline\\ \Delta;\Gamma\vdash e:\tau' \\ \hline\\ \hline\\ \Delta\vdash \tau_a::\kappa_a \\ \hline\\ \Delta\vdash$$

Syntax and type system easily extended with recursive and existential types.

Polymorphic List Library with higher-order ∃

List library is an existential package:

```
\begin{array}{l} \operatorname{pack}(\lambda\alpha :: \star. \ \mu\xi :: \star. \ \operatorname{unit} + (\alpha * \xi), list\_library) \\ \operatorname{as} \ \exists L :: \star \Rightarrow \star. \ \{\operatorname{empty} : \forall \alpha :: \star. \ L \ \alpha; \\ \operatorname{cons} : \forall \alpha :: \star. \ \alpha \to L \ \alpha \to L \ \alpha; \\ \operatorname{unlist} : \forall \alpha :: \star. \ L \ \alpha \to \operatorname{unit} + (\alpha * L \ \alpha); \\ \operatorname{map} : \forall \alpha :: \star. \ \forall \beta :: \star. \ (\alpha \to \beta) \to L \ \alpha \to L \ \beta; \\ \ldots \} \end{array}
```

The witness *type operator* is poly.lists: $\lambda \alpha :: \star . \mu \xi :: \star . \text{ unit } + (\alpha * \xi)$.

The existential $type\ operator\ variable\ L$ represents poly. lists.

List operations are polymorphic in element type.

The **map** function only allows mapping α lists to β lists.

Other Kinds of Kinds

Kinding systems for checking and tracking properties of type expressions:

- Record kinds
 - records at the type-level; define systems of mutually recursive types
- Polymorphic kinds
 - kind abstraction and application in types; System F "one level up"
- Dependent kinds
 - dependent types "one level up"
- Row kinds
 - describe "pieces" of record types for record polymorphism
- Power kinds
 - alternative presentation of subtyping
- Singleton kinds
 - formalize module systems with type sharing

System F_{ω} is type safe.

System F_{ω} is type safe.

- Preservation:
 Induction on typing derivation, using substitution lemmas:
 - ► Term Substitution:

if
$$\Delta_1, \Delta_2; \Gamma_1, x : \tau_x, \Gamma_2 \vdash e_1 : \tau$$
 and $\Delta_1; \Gamma_1 \vdash e_2 : \tau_x$, then $\Delta_1, \Delta_2; \Gamma_1, \Gamma_2 \vdash e_1[e_2/x] : \tau$.

► Type Substitution:

if
$$\Delta_1, \alpha :: \kappa_{\alpha}, \Delta_2 \vdash \tau_1 :: \kappa$$
 and $\Delta_1 \vdash \tau_2 :: \kappa_{\alpha}$, then $\Delta_1, \Delta_2 \vdash \tau_1 [\tau_2/\alpha] :: \kappa$.

Type Substitution:

if
$$au_1 \equiv au_2$$
, then $au_1[au/lpha] \equiv au_2[au/lpha]$.

Type Substitution:

if
$$\Delta_1, \alpha :: \kappa_{\alpha}, \Delta_2; \Gamma_1, \Gamma_2 \vdash e_1 : \tau$$
 and $\Delta_1 \vdash \tau_2 :: \kappa_{\alpha}$, then $\Delta_1, \Delta_2; \Gamma_1, \Gamma_2[\tau_2/\alpha] \vdash e_1[\tau_2/\alpha] : \tau$.

▶ All straightforward inductions, using various weakening and exchange lemmas.

System F_{ω} is type safe.

- Progress: Induction on typing derivation, using canonical form lemmas:
 - ▶ If \cdot ; $\cdot \vdash v : \mathsf{int}$, then v = c.
 - If $\cdot; \cdot \vdash v : \tau_a \to \tau_r$, then $v = \lambda x : \tau_a \cdot e_b$.
 - If \cdot ; $\cdot \vdash v : \forall \alpha :: \kappa_a \cdot \tau_r$, then $v = \Lambda \alpha :: \kappa_a \cdot e_b$.
 - Complicated by typing derivations that end with:

$$\frac{\Delta ; \Gamma \vdash e : \tau \qquad \tau \equiv \tau' \qquad \Delta \vdash \tau' :: \star}{\Delta ; \Gamma \vdash e : \tau'}$$

(just like with subtyping and subsumption).

Parallel Reduction of τ to τ' :

$$au \Rightarrow au'$$

$$egin{aligned} au & au & au \ rac{ au_{a1} \Rightarrow au_{a2} \qquad au_{r1} \Rightarrow au_{r2}}{ au_{a1}
ightarrow au_{r1} \Rightarrow au_{r2}} & au_{r1} \Rightarrow au_{r2} \ \hline au_{a1}
ightarrow au_{r1} \Rightarrow au_{a2}
ightarrow au_{r2} & au & au$$

A more "computational" relation.

Key properties:

► Transitive and symmetric closure of parallel reduction and type equivalence coincide:

 $\tau \Leftrightarrow \tau' \text{ iff } \tau \equiv \tau'$

- Transitive and symmetric closure of parallel reduction and type equivalence coincide:
 - $\tau \Leftrightarrow \tau' \text{ iff } \tau \equiv \tau'$
- ▶ Parallel reduction has the Church-Rosser property:
 - ▶ If $\tau \Rightarrow^* \tau_1$ and $\tau \Rightarrow^* \tau_2$, then there exists τ' such that $\tau_1 \Rightarrow^* \tau'$ and $\tau_2 \Rightarrow^* \tau'$

- Transitive and symmetric closure of parallel reduction and type equivalence coincide:
 - $\tau \Leftrightarrow \tau' \text{ iff } \tau \equiv \tau'$
- ▶ Parallel reduction has the Church-Rosser property:
 - ▶ If $\tau \Rightarrow^* \tau_1$ and $\tau \Rightarrow^* \tau_2$, then there exists τ' such that $\tau_1 \Rightarrow^* \tau'$ and $\tau_2 \Rightarrow^* \tau'$
- Equivalent types share a common reduct:
 - lacktriangleright If $au_1 \equiv au_2$, then there exists au' such that $au_1 \Rrightarrow^* au'$ and $au_2 \Rrightarrow^* au'$

- ► Transitive and symmetric closure of parallel reduction and type equivalence coincide:
 - $\tau \Leftrightarrow \tau' \text{ iff } \tau \equiv \tau'$
- ▶ Parallel reduction has the Church-Rosser property:
 - ▶ If $\tau \Rightarrow^* \tau_1$ and $\tau \Rightarrow^* \tau_2$, then there exists τ' such that $\tau_1 \Rightarrow^* \tau'$ and $\tau_2 \Rightarrow^* \tau'$
- Equivalent types share a common reduct:
 - lacksquare If $au_1\equiv au_2$, then there exists au' such that $au_1\Rrightarrow^* au'$ and $au_2\Rrightarrow^* au'$
- Reduction preserves shapes:
 - ▶ If int $\Rightarrow^* \tau'$, then $\tau' = \text{int}$
 - $\text{If } \tau_a \to \tau_r \Rrightarrow^* \tau' \text{, then } \tau' = \tau'_a \to \tau'_r \text{ and } \tau_a \Rrightarrow^* \tau'_a \text{ and } \tau_r \Rrightarrow^* \tau'_r$
 - If $\forall \alpha :: \kappa_a . \ \tau_r \Rightarrow^* \tau'$, then $\tau' = \forall \alpha :: \kappa_a . \ \tau'_r$ and $\tau_r \Rightarrow^* \tau'_r$

If $\cdot; \cdot \vdash v : \tau_a \to \tau_r$, then $v = \lambda x : \tau_a \cdot e_b$.

Proof:

By cases on the form of $oldsymbol{v}$:

If $\cdot; \cdot \vdash v : \tau_a \to \tau_r$, then $v = \lambda x : \tau_a \cdot e_b$.

Proof:

By cases on the form of v:

 $v = \lambda x : \tau_a \cdot e_b$. We have that $v = \lambda x : \tau_a \cdot e_b$.

If $\cdot;\cdot \vdash v: au_a
ightarrow au_r$, then $v = \lambda x : au_a \cdot e_b$.

Proof:

By cases on the form of v:

v = c

Derivation of \cdot ; $\cdot \vdash v : \tau_a \to \tau_r$ must be of the form:

Therefore, we can construct the derivation $\operatorname{int} \equiv au_a o au_r$.

We can find a common reduct: int $\Rightarrow^* au^\dagger$ and $au_a o au_r \Rightarrow^* au^\dagger$.

Reduction preserves shape: $\operatorname{int} \Rightarrow^* \tau^\dagger$ implies $\tau^\dagger = \operatorname{int}$.

Reduction preserves shape: $au_a o au_r \Rrightarrow^* au^\dagger$ implies $au^\dagger = au_a' o au_r'$.

But, $au^\dagger = {\sf int}$ and $au^\dagger = au_a' o au_r'$ is a contradiction.

If $\cdot; \cdot \vdash v : \tau_a \to \tau_r$, then $v = \lambda x : \tau_a \cdot e_b$.

Proof:

By cases on the form of $oldsymbol{v}$:

 $v = \Lambda \alpha :: \kappa_a \cdot e_b$.

Derivation of $\cdot; \cdot \vdash v : \tau_a \to \tau_r$ must be of the form:

Therefore, we can construct the derivation $\forall \alpha :: \kappa_a. \ \tau_z \equiv \tau_a \to \tau_r.$ We can find a common reduct: $\forall \alpha :: \kappa_a. \ \tau_z \Rightarrow^* \tau^\dagger$ and $\tau_a \to \tau_r \Rightarrow^* \tau^\dagger.$ Reduction preserves shape: $\forall \alpha :: \kappa_a. \ \tau_z \Rightarrow^* \tau^\dagger$ implies $\tau^\dagger = \forall \alpha :: \kappa_a. \ \tau_z'.$ Reduction preserves shape: $\tau_a \to \tau_r \Rightarrow^* \tau^\dagger$ implies $\tau^\dagger = \tau_a' \to \tau_r'.$ But, $\tau^\dagger = \forall \alpha :: \kappa_a. \ \tau_z'$ and $\tau^\dagger = \tau_a' \to \tau_r'$ is a contradiction.

System F_{ω} is type safe.

Where was the $\Delta \vdash \tau :: \kappa$ judgement used in the proof?

System F_{ω} is type safe.

Where was the $\Delta \vdash \tau :: \kappa$ judgement used in the proof? In Type Substitution lemmas, but only in an inessential way.

System F_{ω} is type safe.

Where was the $\Delta \vdash \tau :: \kappa$ judgement used in the proof? In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural; but kinding is not required for type safety!

```
\begin{array}{lll} e & ::= & c \mid x \mid \lambda x : \tau. \ e \mid e \ e \mid \Lambda \alpha. \ e \mid e \ [\tau] \\ v & ::= & c \mid \lambda x : \tau. \ e \mid \Lambda \alpha. \ e \\ \tau & ::= & \operatorname{int} \mid \tau \rightarrow \tau \mid \alpha \mid \forall \alpha. \ \tau \mid \lambda \alpha. \ \tau \mid \tau \ \tau \end{array} \qquad \begin{array}{ll} \Gamma & ::= & \cdot \mid \Gamma, x : \tau \\ \Delta & ::= & \cdot \mid \Delta, \alpha \end{array}
```

$$\begin{array}{lll} e & ::= & c \mid x \mid \lambda x : \tau. \; e \mid e \; e \mid \Lambda \alpha. \; e \mid e \; [\tau] \\ v & ::= & c \mid \lambda x : \tau. \; e \mid \Lambda \alpha. \; e \\ \tau & ::= & \operatorname{int} \mid \tau \rightarrow \tau \mid \alpha \mid \forall \alpha. \; \tau \mid \lambda \alpha. \; \tau \mid \tau \; \tau \end{array} \qquad \begin{array}{ll} \Gamma & ::= & \cdot \mid \Gamma, x : \tau \\ \Delta & ::= & \cdot \mid \Delta, \alpha \end{array}$$

$$e
ightarrow_{\mathsf{cbv}} e'$$

$$\frac{e_f \to_{\mathsf{cbv}} e_f'}{(\lambda x : \tau. \ e_b) \ v_a \to_{\mathsf{cbv}} e_b[v_a/x]} \qquad \frac{e_f \to_{\mathsf{cbv}} e_f'}{e_f \ e_a \to_{\mathsf{cbv}} e_f' \ e_a} \qquad \frac{e_a \to_{\mathsf{cbv}} e_a'}{v_f \ e_a \to_{\mathsf{cbv}} v_f \ e_a'}$$

$$\frac{e_f \to_{\mathsf{cbv}} e_f'}{(\Lambda \alpha. \ e_b) \ [\tau_a] \to_{\mathsf{cbv}} e_b[\tau_a/\alpha]} \qquad \frac{e_f \to_{\mathsf{cbv}} e_f'}{e_f \ [\tau_a] \to_{\mathsf{cbv}} e_f' \ [\tau_a]}$$

$$\begin{array}{lll} e & ::= & c \mid x \mid \lambda x : \tau. \; e \mid e \; e \mid \Lambda \alpha. \; e \mid e \; [\tau] \\ v & ::= & c \mid \lambda x : \tau. \; e \mid \Lambda \alpha. \; e \\ \tau & ::= & \operatorname{int} \mid \tau \rightarrow \tau \mid \alpha \mid \forall \alpha. \; \tau \mid \lambda \alpha. \; \tau \mid \tau \; \tau \end{array} \qquad \begin{array}{ll} \Gamma & ::= & \cdot \mid \Gamma, x : \tau \\ \Delta & ::= & \cdot \mid \Delta, \alpha \end{array}$$

$$\Delta \vdash \tau :: \checkmark$$

$$\begin{array}{ll} \frac{\Delta \vdash \tau_a :: \checkmark \qquad \Delta \vdash \tau_r :: \checkmark}{\Delta \vdash \tau_a \to \tau_r :: \checkmark} \\ \\ \frac{\alpha \in \Delta}{\Delta \vdash \alpha :: \checkmark} & \frac{\Delta, \alpha \vdash \tau_r :: \checkmark}{\Delta \vdash \forall \alpha. \ \tau_r :: \checkmark} \\ \\ \frac{\Delta, \alpha \vdash \tau_b :: \checkmark}{\Delta \vdash \lambda \alpha. \ \tau_b :: \checkmark} & \frac{\Delta \vdash \tau_f :: \checkmark \qquad \Delta \vdash \tau_a :: \checkmark}{\Delta \vdash \tau_f \ \tau_a :: \checkmark} \end{array}$$

Check that free type variables of τ are in Δ , but nothing else.

$$\begin{array}{lll} e & ::= & c \mid x \mid \lambda x : \tau. \ e \mid e \ e \mid \Lambda \alpha. \ e \mid e \ [\tau] \\ v & ::= & c \mid \lambda x : \tau. \ e \mid \Lambda \alpha. \ e \\ \tau & ::= & \inf \mid \tau \rightarrow \tau \mid \alpha \mid \forall \alpha. \ \tau \mid \lambda \alpha. \ \tau \mid \tau \ \tau \end{array} \qquad \begin{array}{ll} \Gamma & ::= & \cdot \mid \Gamma, x : \tau \\ \Delta & ::= & \cdot \mid \Delta, \alpha \end{array}$$

$$au \equiv au'$$

$$\frac{\tau_{2} \equiv \tau_{1}}{\tau \equiv \tau} \qquad \frac{\tau_{2} \equiv \tau_{1}}{\tau_{1} \equiv \tau_{2}} \qquad \frac{\tau_{1} \equiv \tau_{2} \qquad \tau_{2} \equiv \tau_{3}}{\tau_{1} \equiv \tau_{3}}$$

$$\frac{\tau_{a1} \equiv \tau_{a2} \qquad \tau_{r1} \equiv \tau_{r2}}{\tau_{a1} \rightarrow \tau_{r1} \equiv \tau_{a2} \rightarrow \tau_{r2}} \qquad \frac{\tau_{r1} \equiv \tau_{r2}}{\forall \alpha. \ \tau_{r1} \equiv \forall \alpha. \ \tau_{r2}}$$

$$\frac{\tau_{b1} \equiv \tau_{b2}}{\lambda \alpha. \ \tau_{b1} \equiv \lambda \alpha. \ \tau_{b2}} \qquad \frac{\tau_{f1} \equiv \tau_{f2} \qquad \tau_{a1} \equiv \tau_{a2}}{\tau_{f1} \ \tau_{a1} \equiv \tau_{f2} \ \tau_{a2}}$$

$$\frac{(\lambda \alpha. \ \tau_{b}) \ \tau_{a} \equiv \tau_{b} [\alpha/\tau_{a}]}$$

$$\begin{array}{lll} e & ::= & c \mid x \mid \lambda x : \tau. \ e \mid e \ e \mid \Lambda \alpha. \ e \mid e \ [\tau] \\ v & ::= & c \mid \lambda x : \tau. \ e \mid \Lambda \alpha. \ e \\ \tau & ::= & \operatorname{int} \mid \tau \rightarrow \tau \mid \alpha \mid \forall \alpha. \ \tau \mid \lambda \alpha. \ \tau \mid \tau \ \tau \end{array} \qquad \begin{array}{ll} \Gamma & ::= & \cdot \mid \Gamma, x : \tau \\ \Delta & ::= & \cdot \mid \Delta, \alpha \end{array}$$

$$\Delta; \Gamma \vdash e : \tau$$

$$\begin{split} \frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash c : \mathsf{int}} & \frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash x : \tau} \\ \frac{\Delta \vdash \tau_a :: \checkmark \quad \Delta; \Gamma, x : \tau_a \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \lambda x : \tau_a \cdot e_b : \tau_a \rightarrow \tau_r} & \frac{\Delta; \Gamma \vdash e_f : \tau_a \rightarrow \tau_r \quad \Delta; \Gamma \vdash e_a : \tau_a}{\Delta; \Gamma \vdash e_f e_a : \tau_r} \\ \frac{\Delta, \alpha; \Gamma \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \Lambda \alpha. \ e_b : \forall \alpha. \ \tau_r} & \frac{\Delta; \Gamma \vdash e_f : \forall \alpha. \ \tau_r \quad \Delta \vdash \tau_a :: \checkmark}{\Delta; \Gamma \vdash e_f \ [\tau_a] : \tau_r [\tau_a/\alpha]} \\ \frac{\Delta; \Gamma \vdash e : \tau \quad \tau \equiv \tau'}{\Delta; \Gamma \vdash e : \tau'} \end{split}$$

This language is type safe.

This language is type safe.

- Preservation:
 - Induction on typing derivation, using substitution lemmas:
 - Term Substitution:

if
$$\Delta_1, \Delta_2; \Gamma_1, x : \tau_x, \Gamma_2 \vdash e_1 : \tau$$
 and $\Delta_1; \Gamma_1 \vdash e_2 : \tau_x$, then $\Delta_1, \Delta_2; \Gamma_1, \Gamma_2 \vdash e_1[e_2/x] : \tau$.

- ► Type Substitution:
 - if $\Delta_1, \alpha, \Delta_2 \vdash \tau_1 :: \checkmark$ and $\Delta_1 \vdash \tau_2 :: \checkmark$, then $\Delta_1, \Delta_2 \vdash \tau_1 [\tau_2/\alpha] :: \checkmark$.
- ► Type Substitution:

if
$$\tau_1 \equiv \tau_2$$
, then $\tau_1[\tau/\alpha] \equiv \tau_2[\tau/\alpha]$.

Type Substitution:

if
$$\Delta_1, \alpha, \Delta_2$$
; $\Gamma_1, \Gamma_2 \vdash e_1 : \tau$ and $\Delta_1 \vdash \tau_2 :: \checkmark$, then Δ_1, Δ_2 ; $\Gamma_1, \Gamma_2[\tau_2/\alpha] \vdash e_1[\tau_2/\alpha] : \tau$.

▶ All straightforward inductions, using various weakening and exchange lemmas.

This language is type safe.

- Progress:
 Induction on typing derivation, using canonical form lemmas:
 - ▶ If \cdot ; $\cdot \vdash v : \mathsf{int}$, then v = c.
 - If \cdot ; $\cdot \vdash v : \tau_a \to \tau_r$, then $v = \lambda x : \tau_a \cdot e_b$.
 - If $\cdot : \cdot \vdash v : \forall \alpha. \ \tau_r$, then $v = \Lambda \alpha. \ e_b$.
 - Using parallel reduction relation.

Why aren't kinds required for type safety?

Why aren't kinds required for type safety?

Recall statement of type safety:

If \cdot ; $\cdot \vdash e : \tau$, then e does not get stuck.

Why aren't kinds required for type safety?

Recall statement of type safety:

If \cdot ; $\cdot \vdash e : \tau$, then e does not get stuck.

The typing derivation $\cdot; \cdot \vdash e : \tau$ includes definitional-equivalence sub-derivations $\tau \equiv \tau'$, which are explicit evidence that τ and τ' are the same.

► E.g., to show that the "natural" type of the function expression in an application is equivalent to an arrow type:

$$\begin{array}{ccc} \vdots & \vdots & \vdots \\ \overline{\Delta; \Gamma \vdash e_f : \tau_f} & \overline{\tau_f \equiv \tau_a \rightarrow \tau_r} & \vdots \\ \overline{\Delta; \Gamma \vdash e_f : \tau_a \rightarrow \tau_r} & \overline{\Delta; \Gamma \vdash e_a : \tau_a} \\ \overline{\Delta; \Gamma \vdash e_f \ e_a : \tau_r} \end{array}$$

Why aren't kinds required for type safety?

Recall statement of type safety:

If \cdot ; $\cdot \vdash e : \tau$, then e does not get stuck.

The typing derivation $\cdot; \cdot \vdash e : \tau$ includes definitional-equivalence sub-derivations $\tau \equiv \tau'$, which are explicit evidence that τ and τ' are the same.

Definitional equivalence $(\tau \equiv \tau')$ and parallel reduction $(\tau \Rightarrow \tau')$ do not require well-kinded types (although they preserve the kinds of well-kinded types).

▶ E.g., $(\lambda \alpha. \alpha \rightarrow \alpha)$ (int int) \equiv (int int) \rightarrow (int int)

Why aren't kinds required for type safety?

Recall statement of type safety:

```
If \cdot; \cdot \vdash e : \tau, then e does not get stuck.
```

The typing derivation $\cdot; \cdot \vdash e : \tau$ includes definitional-equivalence sub-derivations $\tau \equiv \tau'$, which are explicit evidence that τ and τ' are the same.

Definitional equivalence ($\tau \equiv \tau'$) and parallel reduction ($\tau \Rightarrow \tau'$) do not require well-kinded types (although they preserve the kinds of well-kinded types).

Type (and kind) erasure means that "wrong/bad/meaningless" types do not affect run-time behavior.

Ill-kinded types can't make well-typed terms get stuck.

Kinds aren't for type safety:

▶ Because a typing derivation (even with ill-kinded types), carries enough evidence to guarantee that expressions don't get stuck.

Kinds aren't for type safety:

Because a typing derivation (even with ill-kinded types), carries enough evidence to guarantee that expressions don't get stuck.

Kinds are for type checking:

- ▶ Because programmers write programs, not typing derivations.
- Because type checkers are algorithms.

Kinds are for type checking:

- ▶ Because programmers write programs, not typing derivations.
- Because type checkers are algorithms.

Kinds are for *type checking*:

- ▶ Because programmers write programs, not typing derivations.
- Because type checkers are algorithms.

Recall the statement of type checking:

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

Kinds are for type checking:

- ▶ Because programmers write programs, not typing derivations.
- ▶ Because type checkers are algorithms.

Recall the statement of type checking:

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

Two issues:

- $\Delta; \Gamma \vdash e : \tau \qquad \tau \equiv \tau' \qquad \Delta \vdash \tau' :: \star \\ \Delta; \Gamma \vdash e : \tau'$ is a non-syntax-directed rule
- $m{ au} \equiv m{ au}'$ is a non-syntax-directed relation

One non-issue:

 $ightharpoonup \Delta dash au :: \kappa$ is a syntax-directed relation (STLC "one level up")

Remove non-syntax-directed rules and relations:

$$\Delta;\Gamma dash e: au$$

$$\begin{split} \frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash c : \mathsf{int}} & \frac{\Gamma(x) = \tau}{\Delta; \Gamma \vdash x : \tau} \\ \frac{\Delta \vdash \tau_a :: \star \quad \Delta; \Gamma, x : \tau_a \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \lambda x : \tau_a \cdot e_b : \tau_a \rightarrow \tau_r} & \frac{\Delta, \alpha :: \kappa_a; \Gamma \vdash e_b : \tau_r}{\Delta; \Gamma \vdash \Lambda \alpha \cdot e_b : \forall \alpha :: \kappa_a \cdot \tau_r} \\ \frac{\Delta; \Gamma \vdash e_f : \tau_f \quad \tau_f \Rightarrow^{\Downarrow} \tau_f' \quad \tau_f' = \tau_{fa}' \rightarrow \tau_{fr}'}{\Delta; \Gamma \vdash e_a : \tau_a \quad \tau_a \Rightarrow^{\Downarrow} \tau_a' \quad \tau_{fa}' = \tau_a'}}{\Delta; \Gamma \vdash e_f e_a : \tau_{fr}'} \\ \frac{\Delta; \Gamma \vdash e_f : \tau_f \quad \tau_f \Rightarrow^{\Downarrow} \tau_f' \quad \tau_f' = \forall \alpha :: \kappa_{fa} \cdot \tau_{fr}}{\Delta \vdash \tau_a :: \kappa_a \quad \kappa_{fa} = \kappa_a}} \\ \frac{\Delta; \Gamma \vdash e_f [\tau_a] : \tau_{fr} [\tau_a/\alpha]}{\Delta; \Gamma \vdash e_f [\tau_a] : \tau_{fr} [\tau_a/\alpha]} \end{split}$$

Kinds are for type checking.

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

Kinds are for type checking.

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

- Well-kinded types don't get stuck.
 - ▶ If $\Delta \vdash \tau :: \kappa$ and $\tau \Rightarrow^* \tau'$, then either τ' is in (weak-head) normal form (i.e., a type-level "value") or $\tau' \Rightarrow \tau''$.
 - Proofs by Progress and Preservation on kinding and parallel reduction derivations.

Kinds are for type checking.

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

- Well-kinded types don't get stuck.
 - ▶ If $\Delta \vdash \tau :: \kappa$ and $\tau \Rightarrow^* \tau'$, then either τ' is in (weak-head) normal form (i.e., a type-level "value") or $\tau' \Rightarrow \tau''$.
 - Proofs by Progress and Preservation on kinding and parallel reduction derivations.
 - But, irrelevant for type checking of expressions. If $\tau_f \Rightarrow^* \tau_f'$ "gets stuck" at a type τ_f' that is not an arrow type, then the application typing rule does not apply and a typing derivation does not exist.

Kinds are for type checking.

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

- Well-kinded types don't get stuck.
 - ▶ If $\Delta \vdash \tau :: \kappa$ and $\tau \Rightarrow^* \tau'$, then either τ' is in (weak-head) normal form (i.e., a type-level "value") or $\tau' \Rightarrow \tau''$.
 - ▶ But, irrelevant for type checking of expressions.

Kinds are for type checking.

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

- Well-kinded types don't get stuck.
 - ▶ If $\Delta \vdash \tau :: \kappa$ and $\tau \Rightarrow^* \tau'$, then either τ' is in (weak-head) normal form (i.e., a type-level "value") or $\tau' \Rightarrow \tau''$.
 - ▶ But, irrelevant for type checking of expressions.
- Well-kinded types terminate.
 - ▶ If $\Delta \vdash \tau :: \kappa$, then there exists τ' such that $\tau \Rightarrow^{\psi} \tau'$.
 - Proof is similar to that of termination of STLC.

Kinds are for type checking.

Given Δ , Γ , and e, does there exist τ such that Δ ; $\Gamma \vdash e : \tau$.

Metatheory for kind system:

- ▶ Well-kinded types don't get stuck.
 - ▶ If $\Delta \vdash \tau :: \kappa$ and $\tau \Rightarrow^* \tau'$, then either τ' is in (weak-head) normal form (i.e., a type-level "value") or $\tau' \Rightarrow \tau''$.
 - ▶ But, irrelevant for type checking of expressions.
- Well-kinded types terminate.
 - ▶ If $\Delta \vdash \tau :: \kappa$, then there exists τ' such that $\tau \Rightarrow^{\psi} \tau'$.
 - Proof is similar to that of termination of STLC.

Type checking for System F_{ω} is decidable.

Going Further

This is just the tip of an iceberg.

- Pure type systems
 - Why stop at three levels of expressions (terms, types, and kinds)?
 - ▶ Allow abstraction and application at the level of kinds, and introduce *sorts* to classify kinds.
 - Why stop at four levels of expressions?

 - "For programming languages, however, three levels have proved sufficient."