CSE 505: Programming Languages

Lecture 15 — Subtyping

Zach Tatlock
Autumn 2017

Tradeoffs

Desirable type system properties (desiderata):
» soundness - exclude all programs that get stuck
» completeness - include all programs that don't get stuck

» decidability - effectively determine if a program has a type

Our friend Turing says we can't have it all.

We choose soundness and decidability, aim for “reasonable”
completeness, but still reject valid programs.

Any benefit to an unsound, complete, decidable type system?

Today: subtype polymorphism to start adding completeness.

Zach Tatlock CSE 505 Autumn 2017, Lecture 15 2

Where shall we add completeness?

if true 1 (2, 3) does not get stuck, but we can’t type it either.

Perhaps we should add this typing rule?

ell>true I'key: T

I‘l—ifelezeg:’T
Not if we want to keep decidability!
How about?

I'tes: T

I'Fif trueesy ez :

Sound, adds completeness, but not terribly useful.

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Where shall we add useful completeness?
Code reuse is crucial: write code once, use it in many contexts.

Polymorphism supports code reuse and comes in several flavors:

> ad hoc - implementation depends on type details
+ in ML vs. Cvs. C++

» parametric - implementation independent of type details
T'FAzx. xz:Va.a — «

> subtype - implementation assumes constrained types
void makeSound(Dog d) A{
d.growl(Q);
}

makeSound (new Husky());

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Where shall we add useful completeness?

Code reuse is crucial: write code once, use it in many contexts.

Polymorphism supports code reuse and comes in several flavors:

> ad hoc - implementation depends on type details
+ in ML vs. Cvs. C++

» parametric - implementation independent of type details
T'FAzx.xz:Va — «

> subtype - implementation assumes constrained types
void makeSound(Dog d) {
d.growl(Q);
}

makeSound (new Husky());

Subtyping uses a value of type A as a different type B.

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Where shall we add wuseful completeness? Subtyping.

Wait... how many types can a STLC expression have?

At most one! Currently we have no polymorphism :(
fI'e:rmpand '+ e: 7, then 71 = 1

Let's fix that:
» add completeness by extending STLC with subtyping
» consider implications for the compiler

» also touch on coercions and downcasts
Guiding principle:

If A is a subtype of B (written A < B), then we can safely
use a value of type A anywhere a value of type B is expected.

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Extending STLC with Subtyping

We know the extension recipe:
1. add new syntax
2. add new semantic rules
3. add new typing rules
4. update type safety proof

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Extending STLC with Subtyping

We know the extension recipe: already half done!
1. add-new-syntax
2. add-newsemanticrules
3. add new typing rules
4. update type safety proof

Where to start adding new typing rules?

First, let's focus on records:
> review existing rules
» consider examples of incompleteness

» add new rules to handle examples and improve completeness

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Records Review

e u= - |{li=e1,...,ln =en}|el
T = "'|{l1:7-1,---,ln:7-n}
UV == e e | {llz’vl,,,,,ln:’vn}

{li =v1,...,lp = v}l = v;

/ /7
e; —> e; e —>e

{li=v1,y... lic1=v;_1,li=e;y .. ln=en} el > el
/
— {l1:'v1, ceey li_lz'vi_l, l,-:ei, ooy ln:en}

I'tFei:m I'ke,:m™ labels distinct
Fr{i=e1,...\ln=en}: {l1:711,...,0ln: T}

F'te:{li:71,...5ln:Ta} 1<i<n
F'kel;:7;

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Should this typecheck?
()\m : {llzint, l2:int}. x.li + a:l2) {l1:3, lo=4, l3:5}

Sure! It won't get stuck.

Suggests width subtyping:

{lizm1y eyl i} < {1,y lnimn }

Add new typing rule to take advantage of subtyping: Subsumption

SUBSUMPTION
T'e: 7 ! <rT
I'te: T

Zach Tatlock CSE 505 Autumn 2017, Lecture 15 10

Now it type-checks

+FH3:int -FH4:int -F5:int
. -+ {l1=38,12=4,13=5} : {l1:int, l2:int, l3:int}
sy {lyzint, lotint} F x.ly 4 .l :int {ly:int, lo:int, lg:int} < {lp:int, lp:int}
« = Xx : {ly:int, la:int}. @l + x.l2 : {l1:int, lo:int} — int «F {l1=38,12=4,13=5} : {l1:int, l3:int}
«F (Ax : {lq:int, lotint}. @01 + x.l2){l1=38,12=4,13=5} : int

Instantiation of Subsumption is highlighted (pardon formatting)

The derivation of the subtyping fact
{ll:int, l2:int, l3:int} S {ll:int, l2:int}

would continue, using rules for the 7y < 72. So far we only have
one subtyping axiom, just use that.

Clean division of responsibility:
» Where to use subsumption
» How to show two types are subtypes

Zach Tatlock CSE 505 Autumn 2017, Lecture 15 11

Permutation

Does this program type-check? Does it get stuck?
()\a::{llzint, l2:int}. x.li + $.l2){l2:3; l1:4}

Suggests permutation subtyping:

{litrry e licimi, Lty ooy i} <
{litmry ooy bty li1iTicay ooy LT }

Example with width and permutation. Show:
-+ {l1:7, 15=8, l3:9} : {l2:int, l1:int}

No longer obvious, efficient, sound, complete type-checking algo:
» sometimes such algorithms exist and sometimes they don’t

> in this case, we have them

Zach Tatlock CSE 505 Autumn 2017, Lecture 15 12

Reflexive Transitive Closure

The subtyping principle implies reflexivity and transtivity:

1< T2 T2 < T3

T <7 T < T3

Could get transitivity w/ multiple subsumptions anyway.

Have we lost anything while gaining all these rules?

Type-checking no longer syntax-directed:
» may be 0, 1, or many distinct derivationsof ' F e : 7

» many potential ways to show 7 < 12

Still decidable? Need algorithm checking that labels always a subset of

what's required, must prove it “answers yes" iff there exists a derivation.

Still efficient?

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

13

Implementation Efficiency

Given semantics, width and permutation subtyping totally reasonable.
How do they impact the lives of our dear friend, the compiler writer?

It would be nice to compile e.l down to:
1. evaluate e to a record stored at an address a
2. load a into a register rq

3. load field I from a fixed offset (e.g., 4) into 72

Many type systems are engineered to make this easy for compiler writers.

In general:

If some language restriction seems odd, ask yourself: what useful
invariant does limiting expressiveness provide the compiler?

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

14

Implementation Efficiency

Changes to implement width subtyping alone? None.

Changes to implement permutation subtyping alone? Sort fields.

Changes to implement both? Not so easy. ..
fi: {ll : il"lt} —int fo: {l2 : int} — int
r1 = {ll = 0,l2 = 0} Lo = {lz = 0,l3 = 0}
fl(fL'l) fz(ml) f2(5'32)

Can use dictionary-passing to look up offset at run-time and
maybe optimize away some lookups.

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

15

Getting more completeness.

Added new subtyping judgement:
» width, permutation, reflexive transitive closure

{liitay e ooy b, b} < {liimy ooy lnimn } <7
T < T2 T2 < T3
{lismiy e ooy liciimic, LisTig ooyl b < 71 < T3

{lymry ey by li1iTizay o ooy lniTn }
Added new typing rule, subsumption, to use subtyping:
Tke: 7 <
I'e:T

Squeeze out more completeness:
» Extend subtyping to “parts” of larger types
» Example: Can’t yet use subsumption on a record field's type

» Example: Don't yet have supertypes of 71 — 7o
Zach Tatlock CSE 505 Autumn 2017, Lecture 15

16

Depth

Does this program type-check? Does it get stuck?
()\ac:{llz{lgzint}, l2:int}. x.li.l3 + m.lz){llz{l3=3, l4:9}, l2:4}
Suggests depth subtyping

/
T < T

{lismy oo ey ooy bt} < {liemay ooy Lty ooy Lt }

(With permutation subtyping, can just have depth on left-most field)

Zach Tatlock CSE 505 Autumn 2017, Lecture 15 17

Function Subtyping

Given our rich subtyping on records (and/or other primitives), how
do we extend it to other types, notably 71 — 127

For example, we'd like int — {l1:int, lo:int} < int — {ly:int}
so we can pass a function of the subtype somewhere expecting a
function of the supertype

277

T1—>T2§T3—)’7’4

For a function to have type 73 — T4 it must return something of

type 74 (including subtypes) whenever given something of type 73

(including subtypes). A function assuming less than 73 will do, but
not one assuming more. A function guaranteeing more than 74 but
not one guaranteeing less.

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Function Subtyping

3< T T2 < T4

Also want:
T1—>’7'2§T3—>’T4 T<T

Example: Ax : {ly:int, la:int}. {l; = x.ls,ls = x.l1}
can have type {ly:int, l2:int, l3:int} — {l;:int}
but not {l1:int} — {ly:int}

Jargon: Function types are contravariant in their argument and
covariant in their result
» Depth subtyping means immutable records are covariant in
their fields

This is unintuitive enough that you, a friend, or a manager, will
some day be convinced that functions can be covariant in their
arguments. THIS IS ALWAYS WRONG (UNSOUND).

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

19

Summary of subtyping rules

1< T2 T2 < T3

T < T3 T<T

{liimry ey i, T} < {lima, ooy lnimn }

{ll:Tl, ceey li—l:Ti—la l,;:‘l'i, ceey ln:‘l‘n} S
{liemay ooy ity i1t Tic 1y oo oy bt }

7 < T

{lire, ooy iy ool } < {lemy oo bty oy Lnimn

3T T2 < Ty

T1—)T2ST3—)T4

Notes:
> As always, elegantly handles arbitrarily large syntax (types)
» For other types, e.g., sums or pairs, would have more rules,
deciding carefully about co/contravariance of each position

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

20

Maintaining soundness

Our Preservation and Progress Lemmas still “work” in the
presence of subsumption
» So in theory, any subtyping mistakes would be caught when
trying to prove soundness!

In fact, it seems too easy: induction on typing derivations makes
the subsumption case easy:

» Progress: One new case if typing derivation - - e : T ends
with subsumption. Then - - e : 7/ via a shorter derivation, so
by induction a value or takes a step.

> Preservation: One new case if typing derivation - - e : T ends
with subsumption. Then - e : 7/ via a shorter derivation, so
by induction if e — €’ then - €’ : 7/. So use subsumption
to derive - e’ : T.

Hmm...

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Ah, Canonical Forms

That's because Canonical Forms is where the action is:
> If e v {111, ...y lniTr }, then v is a record with fields
liy..., 1,
» If - v : 7 — T2, then v is a function
We need these for the “interesting” cases of Progress

Now have to use induction on the typing derivation (may end with
many subsumptions) and induction on the subtyping derivation
(e.g., “going up the derivation” only adds fields)
» Canonical Forms is typically trivial without subtyping; now it
requires some work

Note: Without subtyping, Preservation is a little “cleaner” via
induction on e — €’, but with subtyping it's much cleaner via
induction on the typing derivation

» That's why we did it that way

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

A matter of opinion?

If subsumption makes well-typed terms get stuck, it is wrong

We might allow less subsumption (e.g., for efficiency), but we shall
not allow more than is sound

But we have been discussing “subset semantics” in which e : T
and 7 < 7’ meanseisa 1’

» There are “fewer” values of type T than of type 7/, but not
really

Very tempting to go beyond this, but you must be very careful. ..

But first we need to emphasize a really nice property of our current
setup: Types never affect run-time behavior

Zach Tatlock CSE 505 Autumn 2017, Lecture 15 23

Erasure

A program type-checks or does not. If it does, it evaluates just like
in the untyped A-calculus. More formally, we have:

1. Our language with types (e.g., Ax : 7. e, A, +r,(€), etc.)
and a semantics

2. Our language without types (e.g., Az. e, A(e), etc.) and a
different (but very similar) semantics

3. An erasure metafunction from first language to second

4. An equivalence theorem: Erasure commutes with evaluation

This useful (for reasoning and efficiency) fact will be less obvious
(but true) with parametric polymorphism

Zach Tatlock CSE 505 Autumn 2017, Lecture 15 24

Coercion Semantics

Wouldn't it be great if. ..
> int < float

int < {ly:int}

7 < string

v

v

v

we could “overload the cast operator”
For these proposed 7 < 7/ relationships, we need a run-time
action to turn a 7 into a 7’

» Called a coercion

Could use float_of_int and similar but programmers whine
about it

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

Implementing Coercions

If coercion C' (e.g., float_of_int) “witnesses’ 7 < 7/ (e.g.,
int < float), then we insert C' where T is subsumed to 7’

So translation to the untyped language depends on where
subsumption is used. So it's from typing derivations to programs.

But typing derivations aren’t unique: uh-oh

Example 1:
» Suppose int < float and 7 < string
» Consider - F print_string(34) : unit

Example 2:
» Suppose int < {l;:int}
» Consider 34 == 34, where == is equality on ints or pointers

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

26

Coherence

Coercions need to be coherent, meaning they don't have these
problems

More formally, programs are deterministic even though type
checking is not—any typing derivation for e translates to an

equivalent program

Alternately, can make (complicated) rules about where
subsumption occurs and which subtyping rules take precedence
» Hard to understand, remember, implement correctly

It's a mess. ..

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

27

Upcasts and Downcasts

» “Subset” subtyping allows “upcasts”
» "“Coercive subtyping” allows casts with run-time effect
» What about “downcasts”?

That is, should we have something like:
if_hastype(7,e1) then x. e else eg

Roughly, if at run-time ey has type 7 (or a subtype), then bind it

to x and evaluate ea. Else evaluate eg. Avoids having exceptions.

» Not hard to formalize

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

28

Downcasts
Can't deny downcasts exist, but here are some bad things about
them:

> Types don't erase — you need to represent 7 and e;'s type at
run-time. (Hidden data fields)

» Breaks abstractions: Before, passing {l; = 3,l2 = 4} to a
function taking {l; : int} hid the I3 field, so you know it
doesn't change or affect the callee

Some better alternatives:

> Use ML-style datatypes — the programmer decides which
data should have tags

» Use parametric polymorphism — the right way to do
container types (not downcasting results)

Zach Tatlock CSE 505 Autumn 2017, Lecture 15

29

