
KALMAN FILTERS

Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$. Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

Prediction step: if $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ is Gaussian, then prediction

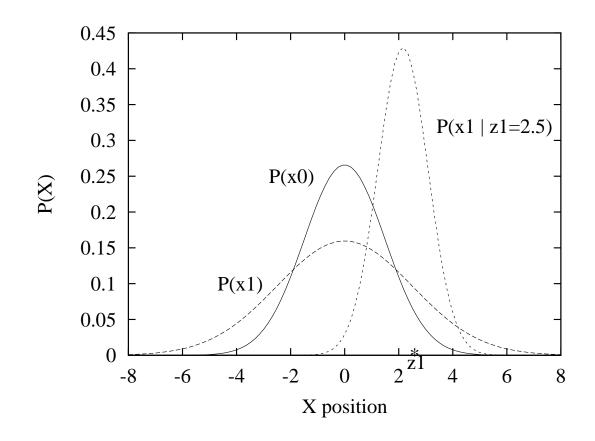
$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{X}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{X}_t) P(\mathbf{X}_t|\mathbf{e}_{1:t}) d\mathbf{X}_t$$

is Gaussian. If $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$ is Gaussian, then the updated distribution

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

is Gaussian

Hence $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ is multivariate Gaussian $N(\boldsymbol{\mu}_t,\boldsymbol{\Sigma}_t)$ for all t


General (nonlinear, non-Gaussian) process: description of posterior grows **unboundedly** as $t \to \infty$

Simple 1-D example

Gaussian random walk on X-axis, s.d. σ_x , sensor s.d. σ_z

$$\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1} + \sigma_z^2 \mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$

$$\sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$

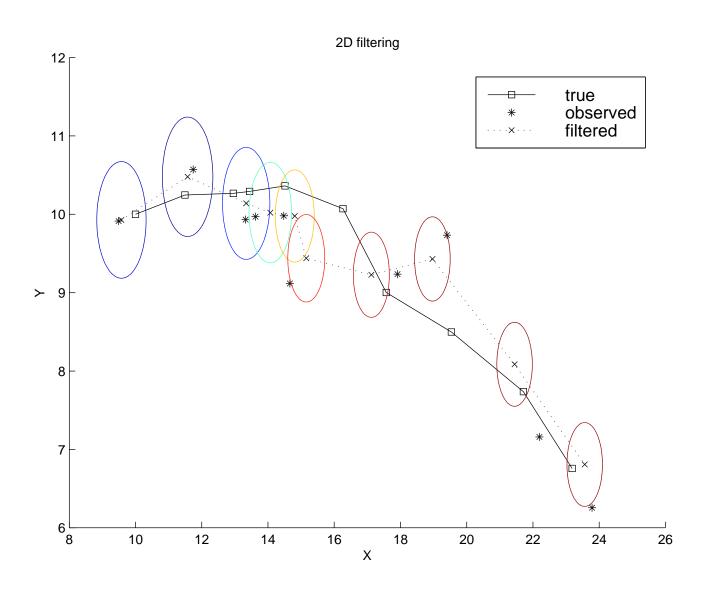
General Kalman update

Transition and sensor models:

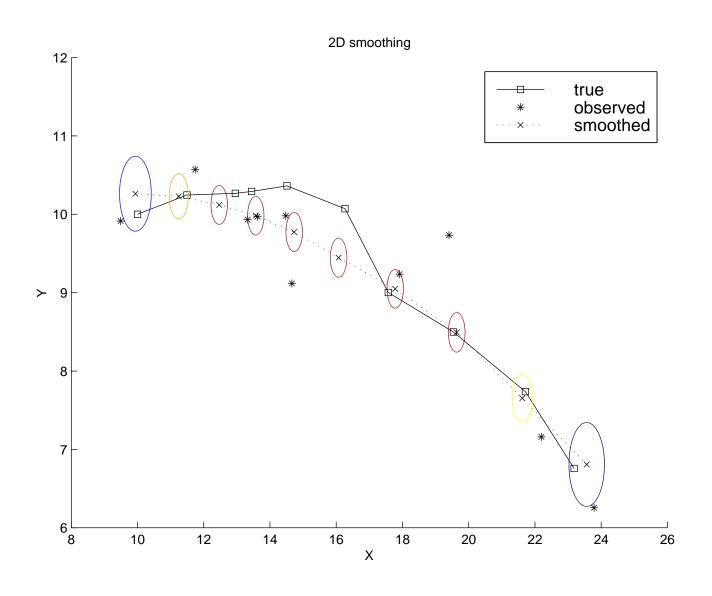
$$P(\mathbf{x}_{t+1}|\mathbf{x}_t) = N(\mathbf{F}\mathbf{x}_t, \mathbf{\Sigma}_x)(\mathbf{x}_{t+1})$$

$$P(\mathbf{z}_t|\mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \mathbf{\Sigma}_z)(\mathbf{z}_t)$$

F is the matrix for the transition; Σ_x the transition noise covariance **H** is the matrix for the sensors; Σ_z the sensor noise covariance

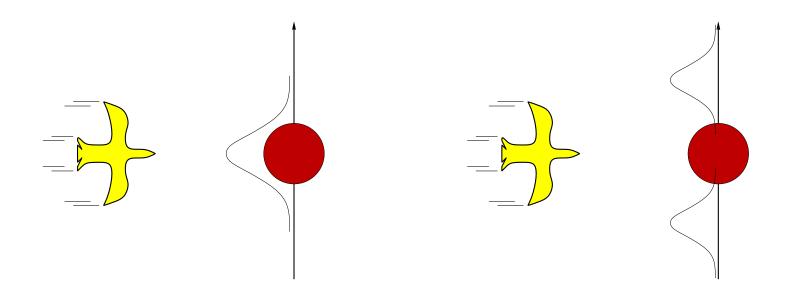

Filter computes the following update:

$$oldsymbol{\mu}_{t+1} \ = \ \mathbf{F}oldsymbol{\mu}_t + \mathbf{K}_{t+1}(\mathbf{z}_{t+1} - \mathbf{H}\mathbf{F}oldsymbol{\mu}_t) \ oldsymbol{\Sigma}_{t+1} \ = \ (\mathbf{I} - \mathbf{K}_{t+1})(\mathbf{F}oldsymbol{\Sigma}_t\mathbf{F}^ op + oldsymbol{\Sigma}_x)$$


where $\mathbf{K}_{t+1} = (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top + \mathbf{\Sigma}_z)^{-1}$ is the Kalman gain matrix

 Σ_t and \mathbf{K}_t are independent of observation sequence, so compute offline

2-D tracking example: filtering


2-D tracking example: smoothing

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around $\mathbf{x}_t = \boldsymbol{\mu}_t$ Fails if systems is locally unsmooth

