KALMAN FILTERS



Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, = XY, 7 X YV Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..
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Gaussian prior, linear Gaussian transition model and sensor model



Updating Gaussian distributions

Prediction step: if P(X;|e;;) is Gaussian, then prediction
P(Xiilent) = f, P(Xii|xe) P(xi]er) dx;

is Gaussian. If P(X, {|e;;) is Gaussian, then the updated distribution
P(Xii1lerir1) = aP (e X)) P(Xys]ers)

is Gaussian

Hence P(X,|e| ) is multivariate Gaussian N (s, 33;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — o¢



Simple 1-D example

Gaussian random walk on X—axis, s.d. o,, sensor s.d. 0.
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General Kalman update

Transition and sensor models:

P<Xt+1‘Xt> - N(Fxt,Ex)(Xm)
P(zi|x;) = N(Hxy, 3:)(z¢)

F' is the matrix for the transition; >, the transition noise covariance
H is the matrix for the sensors; >.. the sensor noise covariance

Filter computes the following update:

pi1 = Fry + Ki(ze — HE py)
Y= [-Ki)(FEF' +3,)

where K, = (FE,F' + 3, H (HFX,F' + 3,)H' +3.)"!
is the Kalman gain matrix

>.; and K, are independent of observation sequence, so compute offline



2-D tracking example: filtering
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2-D tracking example: smoothing
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Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth




