Readings: K&F 2.1, 2.2, 2.3, 3.1

Introduction to
‘ Probabilistic Graphical Models

Lecture 1 — Mar 28, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Logistics

= Teaching Staff

= Instructor: Su-In Lee (suinlee@uw.edu, PAC 536)
= Office hours: Fri 9-10am or by appointment (PAC 536)

= TA: Andrew Guillory (guillory@cs.washington.edu)
= Office hours: Wed 1:30-2:20 pm or by appointment (PAC 216)

= Course website
= cs.washington.edu/515 <
= Discussion group: course website
~—

= Textbook

= (required) Daphne Koller and Nir Friedman, Probabilistic
Graphical Models: Principles and Techniques, MIT Press

= Various research papers (copies available in class)
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Course requirement

= 4 homework assignmentsX60% of final grade)
= Theory / implementation exercises

= First one goes out next Monday!
= 2 weeks to complete each

= HW problems are long and hard
= Please, please, please start early!

= Late/collaboration policies are described on the website
= Final exam (35%)

= Date will be unced later.
= Participation @
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Probabilistic graphical models @

= One of the most exciting developments in machine
learning (knowledge representation, AI, EE, Stats, ...)
in the last two decades...

= Tool for representing complex systems and
performing sophisticated reasoning tasks

= Why have a model?
= Compact and modular representation of complex systems
= Ability to efficiently execute complex reasoning tasks
= Make predictions
= Generalize from particular problem
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Probabilistic graphical models (PGMs)

= Many classical probabilistic problems in statistics,
information theory, pattern recognition, and
statistical mechanics are special cases of the
formalism
= Graphical models provides a @k

= Advantage: specialized techniques developed in one field
can be transferred between research communities

= PGMs are a marriage between graph theory and

probability theory
= Representation;
» Reasoning: probabitity theor

= Any simple example?
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A simple example

= We want to know/model whether our neighbor will
inform us of the alarm being set off

® @

= The alarm can set off (A) if \ ¥
= There is a burglary (B) @
= There is an earthquake (E) l/

= Whether our neighbor calls (N) @

depends on whether the alarm is set off (A)

= "“Variables” in this system
= Whether alarm being set off (A);@;
rthquake(E); ourneighbor calls (N)
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= | Probabilistic Inference
A sil

= Var burglary occurred (B=True)?

Task | Say that the alarm is set off (A=True), then how likely is it to get
a call from our neighbor (N=True)?
Task 11 Given that my neighbor calls (N=True), how likely it is that a

= Earthquake (E), Burglary (B),//}Jarm (A), NeighborCalls (N)
€
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= Reasoning
= Probability theory

eig borCalls

8 independent
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Example Bayesian network

= The “Alarm” network for monitoring intensive care
patients

I
= 37 variables

\0
= 509 parameters (full joint@’ \ Comorser
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Representation: graph's

= Intuitive data structure for modeling highly-interacting
sets of variables
= Compact representation
= Explicit model of modularity

= Data structure that allows for design of efficient general-
purpose algorithms




Reasoning: pro@ty heories

= Well understood framework for modeling uncertainty
= Partial knowledge of the state of the world
= Noisy observations
= Phenomenon not covered by our model
= Inherent stochasticity

= Clear semantics

= Can be learned from data

Probabilistic reasoning

= This course covers:

= Probabilistic graphical model (PGM) represe@ntation
= Bayesian networks (directed graph) 2

A
= Markov networks (undirected graph) yﬂ

= Answering queries in PGMs (“inference”) o Oﬂ

=« What is the probability of X given some observations?

= What is the most likely explanation for what is happening?
= Learning PGMs from data (“learning”) &

=« What are the right/good parameters/structure of the model?
= Application & special topics

= Modeling temporal processes with PGMs

Hidden Markov Models (HMMs) as a special case

= Modeling decision-making processes
Markov Decision Processes (MDPs) as a special case
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Course outline

Week Topic Reading

1 Introduction, Bayesian network representation -~ |2.1-3, 3.1
Bayesian network representation cont. 3.1-3 [

2 Local probability models 5 f
Undirected graphical models 4

3 Exact inference | 9.1-4
Exact inference cont. [ 10.1-2

4 Approximate inference [ 12.1-3
Approximate inference cont. | 12.1-3

5 Parameter estimation [ 17 \
Parameter estimation cont. 17 \

6 Partially observed data (EM algorithm) 19.1-3
Structure learning BNs 18

7 Structure learning BNs cont. l 18
Partially observed data | 19.4-5

8 Learning undirected graphical models | 20.1-3
Learning undirected graphical models cont. | 20.1-3

9 Hidden Markov Models J TBD
HMMs cont. and Kalman filter TBD

10 Markov decision processes TBD

Application:

recommendation systems

Input: movie preferences of many users
Solution: model correlations between movie features

Users that like comedy, often like drama

Given user preferences, suggest recommendations
Example: Amazon.com

-

= Users that like action, often do not like cartoons —)
= Users that like Robert Deniro films often like Al Pacino films
= Given user preferences, can predict probability that new

movies match preferences

CSE 515 — Statistical Methods — Spring 2011

14




Diagnostic systems

= Diagnostic indexing for home health site at microsoft
= Enter symptoms - recommend multimedia content

Describe the child | Age: |Toder | sex: [Female x|

inthe drop-down hoxes &t the . - -
tight. Relevant information wil Complaint: Abdominsl pain H

appear below.
Results so far
Disorder Relevance

viral gastroertertis § [
O shove the child's navel

1
1
1
1
:
1
1 . "
() Either of the child's sides ! Psychosomatic pain | [l ]
O Below the navel to the child's right : Urinary tract infection :
1
1
1
1
1
1
1
1
1

Localized pain: Canthe child localize, or
poirt to, the site of the pain? ’~
(O Mo, unable to localize

() Below the navel fo the child’s left

() Above the navelto the chid's right

() &hbove the navel to the child's left Other [
() Don't Know
Start Over | Review |
Hextz | Finish |
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Many research areas in CS

= Full of tasks that require reasoning under uncertainty

Speech recognition Computer vision
HMM

; i ,,u'la [
ﬁ‘}»}) O T e v ﬁ %l

'l
=1t 1114

t.s'gﬁ:‘
1010l = kS : =

Tracking and robot Iocallzatlon i [Barnard et al]

[ Undirected
w1 graphical model

evolutionary biology [Fox et al]

Fohe Y)/

o

o @ ®

Aardvark Bison Chimp Dog Elephant

Bayesian network

7 [Guestrin et al] 16
[Friedman et al] ) ) Dynamic Bayesian network




Enjoy!

= Probabilistic graphical models are having
significant impact in science, engineering and
beyond

= This class should give you the basic foundation
for applying PGMs and developing new methods

= The fun begins ...
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Today

= Basics of probability
= Conditional probabilities
= Statistical independence
= Random variable

= Simple Bayesian networks <
= Two nodes make a BN
= Naive Bayes

= Should be a review for everyone — Setting up
notation for the class
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Sample spaces, events and probabilities

Probability

= A degree of confidence that an “event” of an uncertain nature will occur.

= Begin with a set Q -- the sample space
= Space of possible outcomes
= e.g. if we consider dice, we might have a set ?={1,2,3,4,5,6}
= aEQis a sample point / atomic event.

= A probability space is a sample space with an assignment P(a.) for
s.t.

(2)= P(3)= P(4)= P(5) = P(6)=1/6

= An event Adis-any subset of Q
- P(A) =@

= E.g., P(die roll<4) =w= 0.5
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Conditional probabilities

= Consider two events o and B,
= e.g. o = getting admitted to the UW CSE, P(‘X)M
B = getting a job offer from Microsoft. ‘)( ]

= After learning that a is true, how do we feel about ?
P

( 1) =200
Lf_ (o)
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Two of the most important rules of
the quarter: 1. The

= From the definition of the conditional distribution,
we immediately see that @ 2
- Pnp)=P@P(la)  gfw)-

™

rally: o U KO

= Mor
. @'“P(aklalm.nak_l)
-

AN
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Two of the most important rules of
the quarter: 2. Bayes rule

= Another immediate consequence of the definition of

conditional Erobabili Pla| 8) = P(3| a)P(a)
@ e e
el

= A more general version of Bayes’ rule, where all the
probabilities are conditioned on some “background”

event y:
pm@:mmi%(a@
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Most important concept of the
quarter: a) Independence

= o and B are independent, if(P(B|a) @
= Denoted Pk (oL B)

= Proposition: a and B are independent if and
only if P(anB)=P(a)P(B)

P = prel -peplet) = F(M)P()é)
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Most important concept of the
quarter: b) Conditional independence

= Independence is rarely true, but conditionally...

= o and B conditionally independent given y if
&d@%@ % W G
= PB (LB /3 M§

Proposition: P5 (o L B |7) if and onIy if
P(anB |v)=P(c [Y)P(B |v)
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Random variables

= Probability distributions are defined for events

W,

variable (such as Grade), is defined by a
function t ciates each outcome in Q (each person)

with a value.
. c@— shorthand for event {wER:f...(W)EA}
= Grade =(B - shorthand for event {wE Q:f;,.(W)=B}
. —

. Proﬁ es of a random variable X:
al(X) = a set of possible values of ra imBar le X >(" Gro«ﬂb
P(X=x

: @crete (categorical): Z’ U aQ 0()2 [ Aﬂ( . ﬂ
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Basic concepts for random variables

Atomic event: assignment x;,...,X, to Xy,..., X,
AN

Conditional probai mi P(Y]X)=P(X,Y)/P(X)

= For all values

Bayes rule: P(X]Y)= ,um @

(D((\

Chain rule: M

= P(X;,.., X)) =

(Gurde | Trt))
G p(Gakehy | Tty )
’ P(&W‘A l-Zn*”L-)

A )
(X,) pLYlY) )
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Joint distribution, marginalization

= Two random variables — Grade & Intelligen

Gesar b} pa ) TR
%{ﬁé{w, L[’F 0\;:;'5 - e

[Vp (G TTh)

. @— Compute margi ingle va
piéD -l R @
/

p(G) o P(& a) = |- plG=h)
p(t
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Marginalization — the general case

= Compute marginal @'tnbutlor.from joint

distribution P(X, ...,
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Today

= Basics of probability
= Conditional probabilities
= Statistical independence
= Random variable

= Two nodes make a BN
= Naive Bayes

= Should be a review for everyone — Setting up
notation for the class
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Representing joint distributions

= Random variables: X;,..., X, /!
= Pis a joint distribution over X;,...,X, P(?ﬂﬁ)
1 €4TEd

If X,,..,X,, binary, neec@‘)sarameters to describe P

Can we represent P more compactly?
= Key: Exploit independence properties
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Independentxr@& ndom varlables

e{T.6Y

--entthen
o)

M WL plkl¥)
! P( XY= prIpUaX:

. AI 2" probabilities are implicitly defined S p()ﬁ)-plﬁ)

= Cannot represent Wypes of distributions

= Xand Y are“@ndﬁmnallvmdepﬁ@glven Z if
s P(X=x|Y=y, 7Z=7) = P(X=x|Z=2) for all values x, y, z

= Equivalently, if we know Z, then knowing Y does 7&
change predictions of X

« Notation: (X LY | 2) Y2
—
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Conditional parameterization
= S = SAT score, Val(S) = {§9,5)} (1.9)% ©

= I = Intelligence, Val(I) = {91} = H(S (M) @
P(1,S) \(I) P
s pas 7 0 [—= -
i s0 .665 . I' s
i st 0.£5 P 4 d S jl’—-\j
oo ok 07 (03) g}% 954 0.05 % |
L g 5, (i) 0210841
Joint parameteyization Conditional parameterization

@ 4 parameters

Alternative parameterization: P(S) and P(I|S)
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Conditional parameterization
= S = SAT score, Val(S) = {s?,s!}
I = Intelligence, Val(I) = {i%il}
G = Grade, Val(G) = {¢°g',9%}
Assume that G ' nde

= Joint parameterization PSS T &/ ‘Q_@
= 2:2:3=12-1<(11 jndependent parameters Qs 1, 3
¢

= Conditional parameterization has
= P(1,S,G) =P()P(S|T)P(G|I,S) = P(T)P(S|T)P(G|I
= P(I) - 1 jhdependent parameter

P(S|I) # 21 independent parameters

P(G|I§- 2-2 independent parameters
Gt
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Naive Bayes model

Class variable C, Val(C) = {c,,...,¢}
Evidence variables Xj;, ..., X,

Naive Bayes assumption: evidence variables
are conditionally independent given C

Applications in medical diagnosis, text classification
Used as a classifier:
P(C=c/|X,...X,) P(C=c)y7P|C=c)
P(C=c,[%,...%,) P(C=c,) i1 P(x|C=c,)

Problem: Double counting correlated evidence
CSE 515 — Statistical Methods — Spring 2011 34




Bayesian network (informal)

= Directed acyclic graph G
= Nodes represent random variables

= Edges represent direct influences between random
variables

= Local probability models

Example 1 Example 2 Naive Bayes

CSE 515 — Statistical Methods — Spring 2011 35

Bayesian network (informal)

= Represent a joint distribution
= Specifies the probability for P(X=x)
= Specifies the probability for P(X=x|E=e)
= Allows for reasoning patterns
= Prediction (e.g., intelligent &> high scores)
= Explanation (e.g., low score = not intelligent)

= Explaining away (different causes for same effect
interact)

Example 2




Bayesian network structure

= Directed acyclic graph G
= Nodes X;, ..., X, represent random variables
= G encodes local Markov assumptions

= X; is independent of its non-descendants given its
parents

= Formally: (X; L NonDesc(X;) | Pa(X;)) e

E1{ACDF}|B
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Independency mappings (I-maps)

= Let P be a distribution over X
= Let I(P) be the independencies (X LY | Z)inP

= A Bayesian network structure is an I-map
(independency mapping) of P if I(G)cI(P)

/s | Pas) I s | Pas
0 s [0.25 0 s |04

P s [025 P s |03

it s [025 it e |02

it s [025 it s |01
I(G)={1LS} I(P)={LLS} I(P)=0 I(G)=v
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Factorization Theorem

= If G is an I-Map of P, then P factorizes over G.

Proof:
= wlog. (without loss of generality)

= From assumption: Pa(X,) c{X, ..., X, .}
{X, ..., X, }—Pa(X;) = NonDesc(X,)
= Since G is an I-Map > (X;; NonDesc(X)| Pa(X;))eI(P)

P(xi | Xl’---! Xi—l) = P(Xi | Pa(xi))
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Factorization implies I-Map

i=1

Proof:

= Need to show (X;; NonDesc(X;)| Pa(X;))<I(P) or that
P(X; | NonDesc(X;)) = P(X; | Pa(X))

= wlog. X,,....X, is an ordering consistent with G

P(X,, NonDesc(X,))
_P(NonDesc(Xi))

r'_[P(xk |Pa(X,))

P(X; | NonDesc(X,)) =

TTP(X, 1Pa(X,))
~P(X, |Pa(X,))
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Bayesian network definition

= A Bayesian network is a pair (G,P)
» P factorizes over G

= P is specified as set of CPDs associated with G’s nodes
(and its parents)

= Parameters
= Joint distribution: 2"
= Bayesian network (bounded in-degree k): n2k
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Today and next class

= Next class

= Details on semantics of BNs, relate them to
independence assumptions encoded by the graph.

= Today’s To-Do List

= Visit the course website.
= Reading K&F 2.1-3, 3.1.
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