Readings: K&F 17.4, 18.1, 18.2, 18.3

Parameter Estimation & Structure Learning

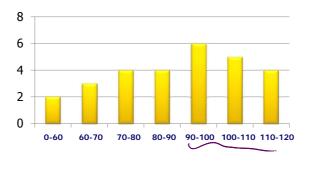
Lecture 10 – Apr 27, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Announcements

- Problem Set #1 has been graded.
 - Assuming Gaussian, sufficient statistics:
 Mean: 89.17; Std: 19.86
- Graded HW will be handed back after class.



CSE 515 – Statistical Methods – Spring 2011

Bayesian Approach: General Formulation

- Joint distribution over D, θ $P(D, \theta) = P(D \mid \theta)P(\theta)$
 - As we saw, likelihood can be described compactly using sufficient statistics
- Posterior distribution over parameters

$$\underbrace{P(\theta \mid D)}_{P(D)} = \underbrace{\frac{P(D \mid \theta)P(\theta)}{(P(D))}}_{P(D)}$$

P(D) is the marginal likelihood of the data

$$P(D) = \int_{Q} P(D|\theta)P(\theta)d\theta \quad \text{figure} \quad \text{prod} \quad \text{pr$$

We want conditions in which posterior is also compact

2

Conjugate Families

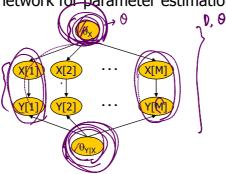
• A family of priors $P(\theta;\alpha)$ is conjugate to a model $P(\xi|\theta)$ if for any possible dataset D of i.i.d samples from $P(\xi|\theta)$ and choice of hyperparameters α for the prior over θ , there are hyperparameters α that describe the posterior, i.e.,

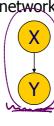
 $P(\theta:\alpha') \propto P(D|\theta)P(\theta:\alpha)$

- Posterior has the same parametric form as the prior
- Dirichlet prior is a conjugate family for the multinomial likelihood
- Conjugate families are useful since:
 - Many distributions can be represented with hyperparameters
 - They allow for sequential update within the same representation
 - In many cases we have closed-form solutions for prediction

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

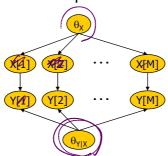




- Instances are independent given the parameters
 - (x[m'],y[m']) are d-separated from (x[m],y[m]) given θ
- Priors for individual variables are a priori independent
 - Global independence of parameters P(θ) = √

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

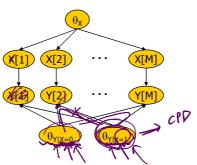


Bayesian network

- Posteriors of θ are independent given complete data
 - Complete data-d-separates parameters for different CPDs
 - $P(\theta_X, \theta_{Y|X} \mid D) = P(\theta_X \mid D) P(\theta_{Y|X} \mid D)$
 - As in MLE, we can solve each estimation problem separately

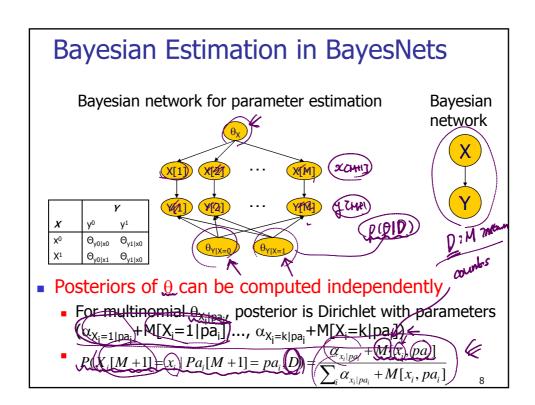
Bayesian Estimation in BayesNets

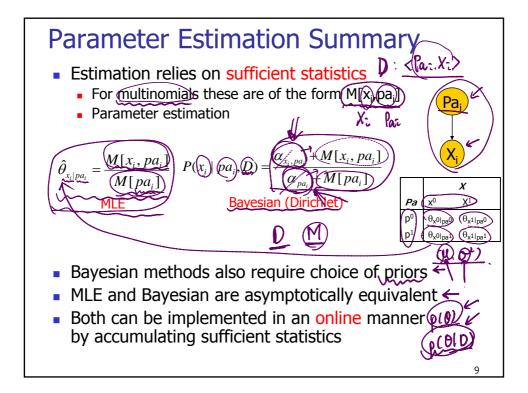
Bayesian network for parameter estimation



Bayesian network

- Posteriors of θ are independent given complete data
 - Also holds for parameters within families
 - Note sontext specific independence between $\theta_{Y|X=0}$ and $\theta_{Y|X=1}$ when given both X and Y





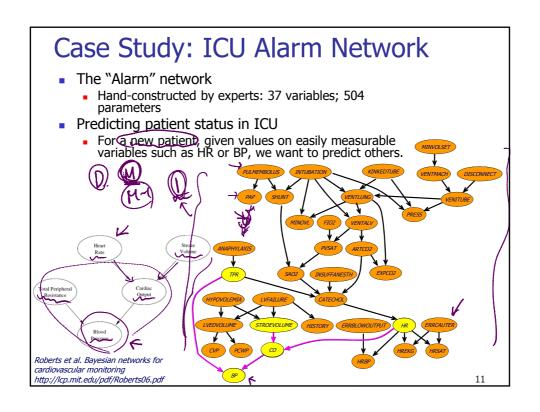
Assessing Priors for BayesNets

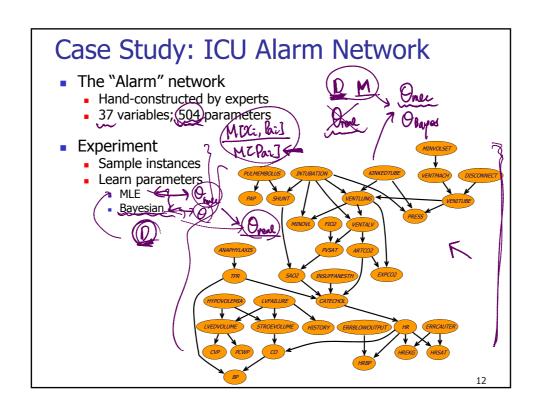
• We need the (x_i, pa) for each node x_i

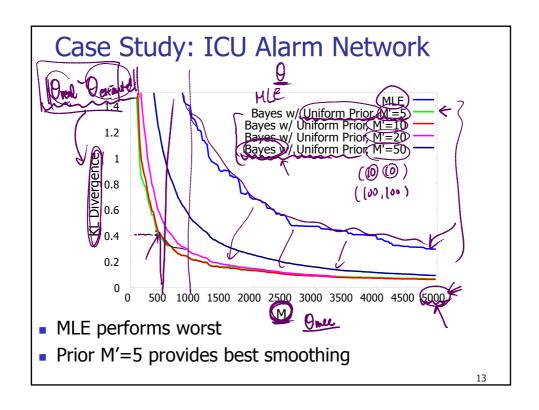
- We can use initial parameters (O₀) as prior information
 - Need also an equivalent sample size parameter M'
 - Then, we let $\alpha(x_i, pa_i) = M'(P(x_i, pa)|\Theta_0)$
- This allows to update a network using new data
 - Example network for priors

Drzat

- P(X=0)=P(X=1)=0.9 P(Y=0)=P(Y=1)=0.5
- $P(Y=0) = P(Y=1) \neq 0$
- M′=1
- Note: $\alpha(x_0) = 0.5 (\alpha(x_0, y_0) = 0.25)$







STRUCTURE LEARNING

CSE 515 – Statistical Methods – Spring 2011

Structure Learning Motivation

- Network structure is often unknown ←
- Purposes of structure learning
 - Discover the dependency structure of the domain
 - Goes beyond statistical correlations between individual variables and detects direct vs (indirect correlations)
 - Set expectations: at best, we can recover the structure up to the I-equivalence class
 - Density estimation
 - Estimate a statistical model of the underlying distribution and use it to reason with and predict new instances

1

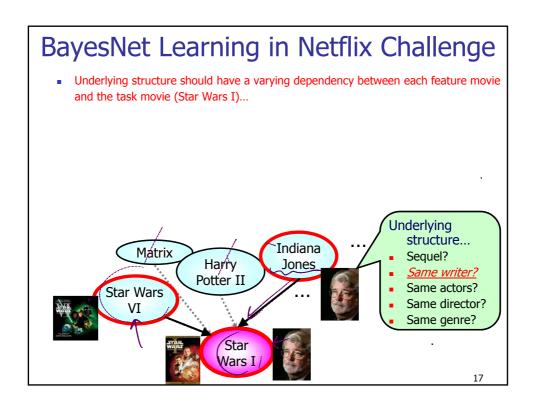
Application in Artificial Intelligence

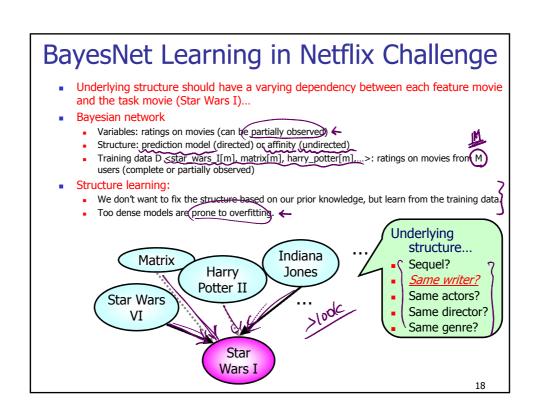
- Collaborative filtering: Predicting a user's preference on a certain product based on his or her preference on other products
 - For example: Netflix competition (movie rating prediction), amazon recommendation system ...

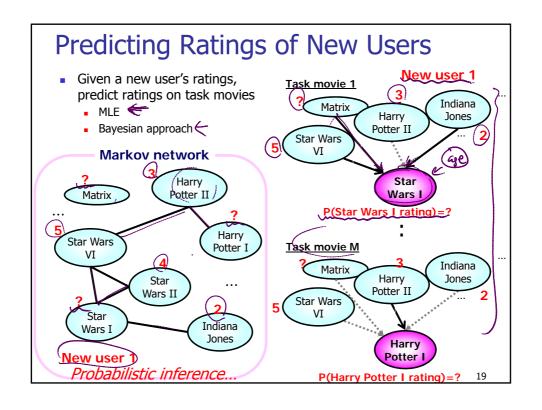
Predict User rating of Star Wars I (task movie)

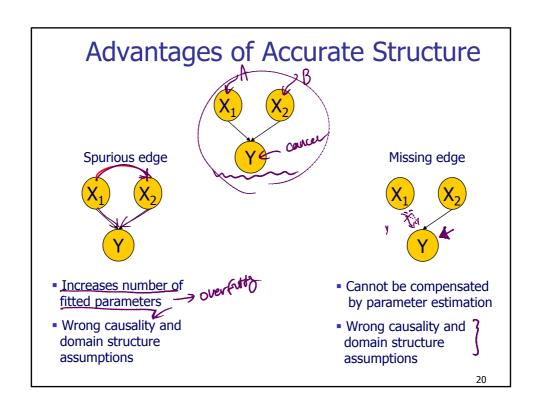
Given Ratings of other movies by the user (feature movies)

Training instances Many users 110,000 movies in IMDB* Indiana → Too many Matrix parameters in the CPD Harry Jones Potter II Star Wars VI W₃ Star Wars I Strength of dependency *Internet Movie Database









Structure Learning Approaches

- Constraint based methods
 - View the Bayesian network as representing dependencies
 - Find a network that best explains dependencies ←
 - Limitation: sensitive to errors in single dependencies
- Score based approaches
 - View learning as a model selection problem
 - Define a scoring function specifying how well the model fits the data
 - Search for a high-scoring network structure
 - Limitation: super-exponential search space
- Bayesian model averaging methods
 - Average predictions across all possible structures
 - Can be done exactly (some cases) or approximately

2

Score Based Approaches

- Strategy
 - Define a scoring function for each candidate structure
 - Search for a high scoring structure
- Key: choice of scoring function ?
 - Likelihood based scores
 - Bayesian based scores

Likelihood Scores • Goal: find (G, θ) that maximize the likelihood • Score_L(G:D)=log P(D | G, θ _G) where θ _G is MLE for G • find G that maximizes Score_L(G:D)

$$\theta$$
=argunp(D10)

organic P(D|G, θ_{G}) -

max P(D|G, θ) = max max P(D|G, θ_{G})

 θ_{G}
 θ_{G}

Score L(G:D) = lay P(D|G, θ_{G})

Example DCD:G, 0) $Score_L(G_1:D) \notin \sum \log \hat{\theta}_{x[m]} + \log \hat{\theta}_{y[m]|x[m]}$ $Score_L(G_0:D) \neq \sum log \hat{\theta}_{x[m]} + log \hat{\theta}_{y[m]}$ $= \sum \log \hat{\theta}_{y[m]|x[m]} - \log \hat{\theta}_{y[m]}$ $Score_L(G_1:D) - Score_L(G_0:D)$ $\int M[x,y] \log \hat{\theta}_{y|x} - \sum M[y] \log \hat{\theta}_{y}$ Information-theore interpretation: $= M \sum_{x} \hat{P}(x, y) \log \hat{P}(y \mid x) - M \sum_{x} \hat{P}(y) \log \hat{P}(y)$ High mutual information implies stronger dependency. $M\sum_{x}\hat{P}(x,y)\log\hat{P}(y|x)-M\sum_{x}\hat{P}(x,y)\log\hat{P}(y)$ Stronger dependency implies stronger preference for the model where X and Y depend on each other. 24

General Decomposition

The Likelihood score decomposes as:

$$\underbrace{Score_{L}(G:D)} = \underbrace{M \sum_{i=1}^{n} \mathbf{I}_{\hat{p}}(X_{i}, Pa_{X_{i}}^{G})} - \underbrace{M \sum_{i=1}^{n} \mathbf{H}_{\hat{p}}(X_{i})}$$

Proof:

$$Score_{L}(G:D) = \sum_{i=1}^{n} \left[\sum_{u_{i} \in Val(Pa_{X_{i}}^{G})} \sum_{x_{i}} M[x_{i}, u_{i}] \log \hat{\theta}_{x_{i}|u_{i}} \right]$$

$$\frac{1}{M} \sum_{u_i} \sum_{x_i} M[x_i, u_i] \log \hat{\theta}_{x_i \mid u_i} = \sum_{u_i} \sum_{x_i} \hat{P}(x_i, u_i) \log \hat{P}(x_i \mid u_i)$$

Information-theoretic

High mutual information implies stronger dependency. Stronger dependency implies stronger preference for the model where X and Y depend on each other.

$$= \sum_{u_{i}} \sum_{x_{i}} \hat{P}(x_{i}, u_{i}) \log \left(\frac{\hat{P}(x_{i}, u_{i}) \hat{P}(x_{i})}{\hat{P}(u_{i}) \hat{P}(x_{i})} \right)$$

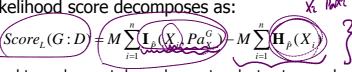
$$= \sum_{u_{i}} \sum_{x_{i}} \hat{P}(x_{i}, u_{i}) \log \left(\frac{\hat{P}(x_{i}, u_{i})}{\hat{P}(u_{i}) \hat{P}(x_{i})} \right) + \sum_{x_{i}} \left(\sum_{u_{i}} \hat{P}(x_{i}, u_{i}) \right) \log \hat{P}(x_{i})$$

$$= \mathbf{I}_{\hat{P}}(X_{i}, U_{i}) + \sum_{x_{i}} \hat{P}(x_{i}) \log \hat{P}(x_{i})$$

$$\mathbf{I}_{\hat{P}}(X_{i}, U_{i}) - \mathbf{H}_{\hat{P}}(X_{i})$$
25

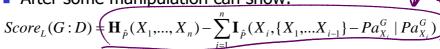
General Decomposition

The Likelihood score decomposes as:



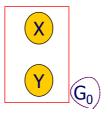
- Second term does not depend on network structure and thus is irrelevant for selecting between two structures
- Score increases as mutual information, or strength of dependence between connected variable increases

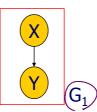
After some manipulation can show:



 These two interpretations are complementary, one is measuring the strength of dependence between and X and its parents, and the other is measuring the extent of the independence of X, from its predecessors given its parents.

Limitations of Likelihood Score





 $Score_L(G_1:D) - Score_L(G_0:D) = \underbrace{M \cdot \mathbf{I}_{\hat{p}}(X,Y)}_{\hat{p}}$

- Since $I_P(X,Y) \ge 0$ \rightarrow Score_L($G_1:D$) \ge Score_L($G_0:D$)
- Adding arcs always helps
- Maximal scores attained for fully connected network
- Such networks overfit the data (i.e., fit the noise in the data)

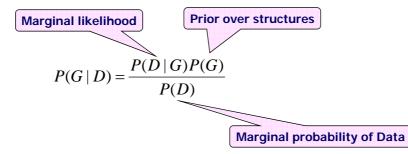
27

Avoiding Overfitting

- Classical problem in machine learning
- Solutions
 - Restricting the hypotheses space
 - Limits the overfitting capability of the learner
 - Example: restrict # of parents or # of parameters
 - Minimum description length
 - Description length measures complexity
 - Prefer models that compactly describes the training data
 - Bayesian methods
 - Average over all possible parameter values
 - Use prior knowledge

Bayesian Score

- Main principle of the Bayesian approach
 - Whenever we have uncertainty over anything, we should place a distribution over it. What uncertainty? (G, Θ_G)

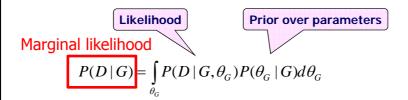


P(D) does not depend on the network

Bayesian Score: $Score_B(G:D) = \log P(D|G) + \log P(G)$

Marginal Likelihood of Data Given G

Bayesian Score: $Score_B(G:D) = \log P(D|G) + \log P(G)$



Note similarity to maximum likelihood score, but with the key difference that ML finds maximum of likelihood and here we compute average of the terms over parameter space