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Lecture 10 – Apr 27, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Parameter Estimation & 
Structure Learning

Readings: K&F 17.4, 18.1, 18.2, 18.3

Announcements
Problem Set #1 has been graded.

Assuming Gaussian, sufficient statistics: 
Mean: 89.17; Std: 19.86

Graded HW will be handed back after class.
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Bayesian Approach: General Formulation
Joint distribution over D,θ

As we saw, likelihood can be described compactly using 
sufficient statistics

Posterior distribution over parameters

P(D) is the marginal likelihood of the data

We want conditions in which posterior is also 
compact
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Conjugate Families
A family of priors P(θ:α) is conjugate to a model P(ξ|θ) if 
for any possible dataset D of i.i.d samples from P(ξ|θ) 
and choice of hyperparameters α for the prior over θ, 
there are hyperparameters α’ that describe the posterior, 
i.e.,
P(θ:α’) ∝ P(D|θ)P(θ:α) 

Posterior has the same parametric form as the prior
Dirichlet prior is a conjugate family for the multinomial likelihood

Conjugate families are useful since:
Many distributions can be represented with hyperparameters
They allow for sequential update within the same representation
In many cases we have closed-form solutions for prediction

4



3

Bayesian Estimation in BayesNets

Instances are independent given the parameters
(x[m’],y[m’]) are d-separated from (x[m],y[m]) given θ

Priors for individual variables are a priori independent
Global independence of parameters 
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Bayesian Estimation in BayesNets

Posteriors of θ are independent given complete data
Complete data d-separates parameters for different CPDs

As in MLE, we can solve each estimation problem separately
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Bayesian Estimation in BayesNets

Posteriors of θ are independent given complete data
Also holds for parameters within families
Note context specific independence between θY|X=0 and 
θY|X=1 when given both X and Y
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Bayesian Estimation in BayesNets

Posteriors of θ can be computed independently
For multinomial θXi|pai

, posterior is Dirichlet with parameters 
(αXi=1|pai

+M[Xi=1|pai],..., αXi=k|pai
+M[Xi=k|pai])
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Parameter Estimation Summary
Estimation relies on sufficient statistics

For multinomials these are of the form M[xi,pai]
Parameter estimation

Bayesian methods also require choice of priors
MLE and Bayesian are asymptotically equivalent
Both can be implemented in an online manner 
by accumulating sufficient statistics
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Pai
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Assessing Priors for BayesNets
We need the α(xi,pai) for each node xi

We can use initial parameters Θ0  as prior 
information

Need also an equivalent sample size parameter M’
Then, we let α(xi,pai) = M’ ⋅ P(xi,pai|Θ0)

This allows to update a network using new data

X

Y

Example network for priors
P(X=0)=P(X=1)=0.5
P(Y=0)=P(Y=1)=0.5
M’=1
Note: α(x0)=0.5 α(x0,y0)=0.25 10
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Case Study: ICU Alarm Network
The “Alarm” network

Hand-constructed by experts: 37 variables; 504 
parameters

Predicting patient status in ICU
For a new patient, given values on easily measurable 
variables such as HR or BP, we want to predict others.
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Roberts et al. Bayesian networks for 
cardiovascular monitoring
http://lcp.mit.edu/pdf/Roberts06.pdf
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Case Study: ICU Alarm Network
The “Alarm” network

Hand-constructed by experts
37 variables; 504 parameters

Experiment
Sample instances
Learn parameters

MLE
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Case Study: ICU Alarm Network

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

KL
 D

iv
er

ge
nc

e

M

MLE
Bayes w/ Uniform Prior, M'=5

Bayes w/ Uniform Prior, M'=10
Bayes w/ Uniform Prior, M'=20
Bayes w/ Uniform Prior, M'=50

MLE performs worst
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STRUCTURE LEARNING
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Structure Learning Motivation
Network structure is often unknown

Purposes of structure learning
Discover the dependency structure of the domain

Goes beyond statistical correlations between individual 
variables and detects direct vs. indirect correlations
Set expectations: at best, we can recover the structure up to 
the I-equivalence class

Density estimation
Estimate a statistical model of the underlying distribution and 
use it to reason with and predict new instances
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Application in Artificial Intelligence
Collaborative filtering: Predicting a user’s preference on a certain 
product based on his or her preference on other products

For example: Netflix competition (movie rating prediction), 
amazon recommendation system …

Star 
Wars I

Predict   User rating of Star Wars I (task movie)

Star Wars 
VI

Indiana 
Jones

…
…

Matrix
Harry 

Potter II

Given     Ratings of other movies by the user (feature movies)

Training instances  Many users >110,000 movies
in IMDB*
→ Too many
parameters in the CPD

*Internet Movie Database

w2

w1

w3
w4

Strength of dependency
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BayesNet Learning in Netflix Challenge
Underlying structure should have a varying dependency between each feature movie 
and the task movie (Star Wars I)…
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Underlying 
structure…
Sequel?
Same writer?
Same actors?
Same director?
Same genre?

Underlying 
structure…
Sequel?
Same writer?
Same actors?
Same director?
Same genre?

BayesNet Learning in Netflix Challenge
Underlying structure should have a varying dependency between each feature movie 
and the task movie (Star Wars I)…
Bayesian network

Variables: ratings on movies (can be partially observed)
Structure: prediction model (directed) or affinity (undirected)
Training data D <star_wars_I[m], matrix[m], harry_potter[m],…>: ratings on movies from M 
users (complete or partially observed)

Structure learning: 
We don’t want to fix the structure based on our prior knowledge, but learn from the training data.
Too dense models are prone to overfitting.
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Predicting Ratings of New Users
Given a new user’s ratings, 
predict ratings on task movies

MLE
Bayesian approach
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Probabilistic inference…

Advantages of Accurate Structure
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Spurious edge Missing edge

Increases number of
fitted parameters

Wrong causality and
domain structure
assumptions

Cannot be compensated
by parameter estimation

Wrong causality and
domain structure
assumptions
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Structure Learning Approaches
Constraint based methods

View the Bayesian network as representing dependencies
Find a network that best explains dependencies
Limitation: sensitive to errors in single dependencies

Score based approaches
View learning as a model selection problem

Define a scoring function specifying how well the model fits the data
Search for a high-scoring network structure

Limitation: super-exponential search space

Bayesian model averaging methods
Average predictions across all possible structures
Can be done exactly (some cases) or approximately

21

Today…

Score Based Approaches
Strategy

Define a scoring function for each candidate structure
Search for a high scoring structure

Key: choice of scoring function
Likelihood based scores
Bayesian based scores

22
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Likelihood Scores
Goal: find (G,θ) that maximize the likelihood

ScoreL(G:D)=log P(D | G, θ’G) where θ’G is MLE for G
Find G that maximizes ScoreL(G:D)
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Example
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G1G0

Information-theoretic
interpretation:
High mutual information implies 
stronger dependency.
Stronger dependency implies stronger 
preference for the model where X and 
Y depend on each other.
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General Decomposition
The Likelihood score decomposes as:

Proof:
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Information-theoretic
interpretation:
High mutual information implies 
stronger dependency.
Stronger dependency implies 
stronger preference for the 
model where X and Y depend on 
each other.

General Decomposition
The Likelihood score decomposes as:

Second term does not depend on network structure and 
thus is irrelevant for selecting between two structures
Score increases as mutual information, or strength of 
dependence between connected variable increases

After some manipulation can show:

These two interpretations are complementary, one is 
measuring the strength of dependence between and X and 
its parents, and the other is measuring the extent of the 
independence of X, from its predecessors given its parents.
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Limitations of Likelihood Score

X

Y

X

Y

),():():( ˆ01 YXMDGScoreDGScore PLL I⋅=−

G1G0

Since IP(X,Y)≥0 ScoreL(G1:D)≥ScoreL(G0:D)

Adding arcs always helps

Maximal scores attained for fully connected network

Such networks overfit the data (i.e., fit the noise in the data)
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Avoiding Overfitting 
Classical problem in machine learning

Solutions
Restricting the hypotheses space

Limits the overfitting capability of the learner
Example: restrict # of parents or # of parameters

Minimum description length
Description length measures complexity
Prefer models that compactly describes the training data

Bayesian methods
Average over all possible parameter values
Use prior knowledge

28
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Bayesian Score
Main principle of the Bayesian approach

Whenever we have uncertainty over anything, we should place a 
distribution over it. What uncertainty? (G, ΘG)
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Marginal likelihood Prior over structures
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Marginal probability of Data

P(D) does not depend on the network

Bayesian Score: )(log)|(log):( GPGDPDGScoreB +=

Marginal Likelihood of Data Given G

Bayesian Score: )(log)|(log):( GPGDPDGScoreB +=

Likelihood Prior over parameters
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G
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θ
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Note similarity to maximum likelihood score, but with 
the key difference that ML finds maximum of 
likelihood and here we compute average of the terms 
over parameter space
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Marginal likelihood


