Readings: K&F 17.4, 18.1, 18.2, 18.3

Parameter Estimation &
% | Structure Learning

Lecture 10 — Apr 27, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Announcements

= Problem Set #1 has been graded.
= Assuming Gaussian, sufficient statistics:
Mean: 89.17; Std: 19.86

s Graded HW will be handed back after class.
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Bayesian Approach: General Formulation
= Joint distribution over D,8 P(D.6)=P(D|6)P(0)
Vo e

= As we saw, likelihood can be described compactly using
sufficient statistics

= Posterior distribution over parameters

P(o| D)=~ DP(D

= P(D) is the marginal likelihood of the data
PD)=[PDIOPEIO { p@  peolD).

= We want conditions in which posterior is also
compact

Conjugate Families
= A family of priors P(6:a) is conjugate to a model\P(¢|0) if
ééle%

for any possible dataset D of i.i.d samples from
and choice of hyperparameters o for the prior over 0,
there are hyperparameters@ that describe the posterior,

i.e.,
£(0:0)  P(DIO)R(0:0).
= Posterior has the same parametric form as the prioré
= Dirichlet prior is a conjugate family for the multinomial likelihood

= Conjugate families are useful since:
= Many distributions can be represented with hyperparameters
= They allow for sequential update within the same representation
= In many cases we have closed-form solutions for prediction




Bayesian Estimation in BayesNets

Bayesian network forparameter estimation Bayesian
D, 0 ne Kk

= Instances are independent given the parameters
= (Xx[m],y[m’]) are d-separated from (xJm]y[m]) given 0
= Priors for individual variables are a priorii endent

= Global independence of parameters  P(6) (b p
i 5

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian
network

= Posteriors of 0 are independent given complete data
= Complete data ates parameters for different CPDs
= P(HxﬁnxlD):D) | <«
= As in MLE, we can solve each estimation problem separately
6




Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian
network

= Posteriors of 0 are independent given complete data
= Also holds for parameters within families

. NoteCéﬁntgg; %]fiandependencé between 6y x-, and
By;x=1 when given both X and Y

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian
network
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Parameter Estimation Summart
% x>

= Estimation relies on sufficient statistics D

« For these are of the for 1,

= Parameter estimation

X2\ 5
N~ ([T i3

= Bayesian methods also require choice of| priors *E i )

= MLE and Bayesian are asymptotically equivalent < z
= Both can be implemented in an online manner@Lg/ ¢
by accumulating sufficient statistics @D

s A
9
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Assessing Priors for BayesNets

= We need th =@@ ) for each node x; @
\Oo
= We can use initial parameters@ as prior ©

information
arameter@

= Need also an
= Then, we let a(x;pa) = M’ ! 'MM

= This allows to update a network using new data

= Example network for priors
P(Y=0)=P(Y=1)
e P
= Note: a(xo):O.S@:O.ZS ~ 10

0o
=




Case Study: ICU Alarm Network

= The “Alarm” network

= Hand-constructed by experts: 37 variables; 504
parameters

= Predictin tient status in ICU
. For@gfuagyigaﬁb, given values on easily measurable
variables such as HR or BP, we want to predict others. 7]

Roberts et al. Bayesian networks for
cardiovascular monitoring

http.//lcp.mit.edu/pdf/Roberts06.pdf 11

= The “Alarm” network m
= Hand-constructed by experts : \ @m
= 37 variables;ara ers

v G, bl

= Experiment
= Sample instances

= Learn paramete
MLE ~&3

= Bayesian &=

@




Case Study ICU Alarm Network

9
MLE

0; 500 1000 1500 2000 2 3000 3500 4000 4500
= MLE performs worst Owee

= Prior M’=5 provides best smoothing

13

STRUCTURE LEARNING
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Structure Learning Motivation

= Network structure is often unknown <

= Purposes of structure learning <
= Discover the dependency structure of the domain <«

= Goes beyond statistical elations between individual
variables and detects @vs indirect correlations
= Set expectations: at best, we can recover the structure up to
the I-equivalence class
= Density estimation < A

« Estimate a statistical model of the underlying distribution and
use it to reason with and predict new instances

15

Application in Artificial Intelligence

= Collaborative filtering: Predicting a user’s preference on a certain
product based ow%e on other products
= For example:(\Netflix competition) (movie rating prediction),

. — T
amazon recommendation system ...
o ———

Predict User rating of Star Wars I (task movie)-
Given  Ratings of other movies by the user (feature movies)

Training instances Many-users—

@ Indiana  , .,
- Harry Jones
X\ Potter II = L

m» —
P “ Q LI I ]
.
., Wl -
* = 2
"
3
.

in IMDB*
— Too many
parameters in the CPD

*Internet Movie Database




BayesNet Learning in Netflix Challenge

= Underlying structure should have a varying dependency between each feature movie
and the task movie (Star Wars I)...

Underlying
structure...

= Sequel?

= Same writer?

= Same actors?

= Same director?

Same genre?

17

BayesNet Learning in Netflix Challenge

= Underlying structure should have a varying dependency between each feature movie
and the task movie (Star Wars I)...
= Bayesian network
= Variables: ratings on movies (can l(e partially observeb) &~ ﬂ
= Structure: prediction model (directed) of affinity (undirected)
MNAN A~ —

= Training data D gstar_wars_I[m], matrix[m], harry_potter[m],...>: ratings on movies fron@

users (complete or partially observed)

= Structure learning:
= We don't want to fix the d on our prior knowledge, but learn from the training data
= Too dense models arg/prone to overfitting. <«—

Underlying

. . structure...
Indiana 5
Harry =C Sequel?
» | Same writer?
Potter I1

= | Same actors?
= [ Same director?
Same genre?

18




Predicting Ratings of New Users

= Given a new user’s ratings, Task movie 1 Dew user 1
predict ratings on task movies

. MLE €
= Bayesian approach &

Markov network @

P(Star Wars | ratin

gk movie M

P/‘Oba//ISl'IC Iﬂfé’/‘é’ﬂCe. P(Harry Potter I rating)=? 19

Advantages f Accurate Structure

Missing edge

= Increases number of Wé\“’b‘ = Cannot be compensated
fitted parameters —2 © by parameter estimation

= Wrong causality and = Wrong causality and
domain structure domain structure

assumptions assumptions
20




Structure Learning Approaches

» Constraint based methods
= View the Bayesian network as representing dependencies
= Find a network that best explains dependencies <— P
= Limitation: sensitive to errors in single dependencies

P A
(=2
= Score based approaches

= View learning as a model selection problem
« Define a pecifying how well the modellfits the data
= Search for g high-scoring network structure

=« Limitation: super-exponential search space_ <—

= Bayesian model averaging methods
= Average predictions across all possible structures
= Can be done exactly (some cases) or approximately

21

Score Based Approaches
= Strategy

= Define a scorin tion for each candidate structure
= Search for athigh scoring structure
= Key: choice of scoring function z

= Likelihood based scores Z
= Bayesian based scores

22




Likelihood Scores

= Goal: find (@Q) that@mize the likelihood
= Score,(G:D)=log P(D | G, ¢.) where &% is MLE for G

. @that maximizes(Score, (G:D

@zwagﬂ)colg)
oo PCD1G. ) -
&0

23

69 0,1my 109 6,5y

r L 0 X 1
m
m Score (G,:D) =\)» log ‘9y[m1|x[m1
—_— =

109 8,,;
Information—theoref&d Jd} 2
interpretation: - \’\ S——————
High mutual informatierrimplies (/

stronger dependency.

Stronger dependency implies stronger
preference for the model where X and
Y depend on each other.




General Decomposition @

= The Likelihood score de pOSes as: @
w MZI (X;,Pag) MZH (X.)

= Proof:

Score, (G:D) = Zn:{ > D .MIx,u]log éx,lu,]

i=1 | ujeval(Pag;) X;

o ZEMD gl ~ 3P u)0gP0s )

Information-theoretic = zz p(x u;) log P(X Ui )P(X)

interpretation: v P(U )P(X )

High mutual information implies P(X u) R .
stronger dependency. = P(xI u)l g( ] P(x;,u;) |log P(x;)
Stronger dependency implies ZZ P(u;)P(x,) ; ;

stronger preference for the =1. X U+ S P(x)log P(x

model where X and Y depend on ( ) Z ()log P(x)

each other. l. (x u,)- H (X) 55

General Decomposition

= The Likelihood score decompaoses as:

= Second term does not depend on network structure and
thus is irrelevant for selecting between two structures

= Score increases as mutual information, or strength of D
dependence between connected variable increases “

= After some manipulation can show: \/
Score, (G : D) @(1 Xo)= D Vs (X Xy, X }—Pag | Pag )
=g
= These two interpretations are complementary, one is
measuring the strength of dependence between and X and

its parents, and the other is measuring the extent of the
independence of X, from its predecessors given its parents.
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Limitations of Likelihood Score

®)
® e &

Score, (G, :D)—Score (G,:D)=M -1,(X,Y)

= Since IP(X,Ye core (G;:D)>Score (Gy:

= Adding arcs always helps ¢
= Maximal scores attained for fully connected network Z/
= Such networks overfit the data (i.e., fit the noise in the data)

27

Avoiding Overfitting

= Classical problem in machine learning

= Solutions

» Restricting the hypotheses space

= Limits the overfitting capability of the learner

= Example: restrict # of parents or # of parameters
= Minimum description length

= Description length measures complexity

= Prefer models that compactly describes the training data
= Bayesian methods

= Average over all possible parameter values

= Use prior knowledge

28




Bayesian Score |

= Main principle of the Bayesian approach

= Whenever we have uncertainty over anything, we should place a
distribution over it. What uncertainty? (G, O)

Marginal likelihood Prior over structures

P(G|D)= P(DFL?S;’(G)

[ Marginal probability of Data]

P(D) does not depend on the network

Bayesian Score: Score, (G:D)=IlogP(D|G)+logP(G)
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Marginal Likelihood of Data Given G

Bayesian Score: Score,(G:D)=logP(D|G)+logP(G)

Likelihood Prior over parameters
Marginal likelihood

P(D|G) [P(D]G,68:)P(6; |G)d6,

b6

Note similarity to maximum likelihood score, but with
the key difference that ML finds maximum of
likelihood and here we compute average of the terms
over parameter space

30




