Readings: K&F 18.3, 18.4, 18.5, 18.6

Lecture 11 – May 2, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Last Time

- Score-based structure learning
 - Candidate structures; Score function; Search for the high-scoring structure
- Scoring functions
 - Maximum likelihood score ←
 - Score_L(G:D)=log P(D | G, θ'_G) where θ'_G is MLE for G
 - Prone to overfitting
 - Bayesian score ←

CSE 515 – Statistical Methods – Spring 2011

Bayesian Score

P(O) P(OID)

- Main principle of the Bayesian approach p(メເປາເປັ ໄປ)
 - Whenever we have uncertainty over anything, place a distribution over it.
 - What uncertainty? (G, Θ_G)
 P(G)
 P(G)

P(D) does not depend on the network

Bayesian Score: $Score_B(G:D) = \underbrace{\log P(D \mid G)} + \underbrace{\log P(G)}$

Marginal Likelihood of Data Given G

Bayesian Score: $Score_B(G:D) = \log P(D|G) + \log P(G)$

Marginal likelihood $P(D \mid G) = \bigcap_{G \in \mathcal{G}} P(\mathcal{G}, \mathcal{G}_{G}) = \bigcap_{G \in \mathcal{G}} P(\mathcal{G}, \mathcal{G}_{G}) \rightarrow \text{ML sore}$

Note similarity to maximum likelihood score, but with the key difference that ML finds maximum of likelihood and here we compute average of the terms over parameter space

Marginal Likelihood: Binomial Case

Assume a sequence of m coin tosses

By the chain rule for probabilities

5

Marginal Likelihood: Binomial Case

Assume a sequence of m coin tosses

Recall that for <u>Dirichlet priors</u>

 $P(x[m+1] = H \mid x[1], \dots, x[m])$

Where M^m_H is number of heads in first m examples

$$P(x[1],...,x[m]) = \frac{[\alpha_H \cdot ... \cdot (\alpha_H + M_H - 1)][\alpha_T \cdot ... \cdot (\alpha_T + M_T - 1)]}{\alpha \cdot ... \cdot (\alpha + M - 1)}$$

Marginal Likelihood: Binomial Case
$$P(x[1],...,x[m]) = \frac{[\alpha_{H} \cdot ... \cdot (\alpha_{H} + M_{H} - 1)][\alpha_{T} \cdot ... \cdot (\alpha_{T} + M_{T} - 1)]}{\alpha \cdot ... \cdot (\alpha + M - 1)}$$
Simplify using $\Gamma(\mathbf{x}+\mathbf{1}) = \mathbf{x}\Gamma(\mathbf{x})$

$$\underline{(\alpha)(\alpha+1)\cdots(\alpha+M-1)} = \frac{\Gamma(\alpha+M)}{\Gamma(\alpha)}$$

$$P(x[1],...,x[m]) = \frac{\Gamma(\alpha)}{\Gamma(\alpha+M)} \left(\frac{\Gamma(\alpha_{H} + M_{H})}{\Gamma(\alpha_{H})}\right) \left(\frac{\Gamma(\alpha_{T} + M_{T})}{\Gamma(\alpha_{T})}\right)$$
For multinomials with Dirichlet-prior
$$P(x[1],...,x[m]) = \frac{\Gamma(\alpha)}{\Gamma(\alpha+M)} \cdot \prod_{i=1}^{k} \frac{\Gamma(\alpha_{i} + M[x^{i}])}{\Gamma(\alpha_{i})}$$

Bayesian Score: Asymptotic Behavior

■ For $(M) \rightarrow \infty$, a network G with Dirichlet priors satisfies

$$\log P(D \mid G) = l(\hat{\theta}_G : D) - \frac{\log M}{2} Dim(G) + O(1)$$

Dim(G): number of independent parameters in G

Approximation is called <u>BIC score</u>

- Score exhibits tradeoff between fit to data and complexity
- Mutual information grows linearly with M while complexity grows logarithmically with M
 - As M grows, more emphasis is given to the fit to the data

.2

Bayesian Score: Asymptotic Behavior

■ For $M \rightarrow \infty$, a network G with Dirichlet priors satisfies

$$\log P(D \mid G) = l(\hat{\theta}_{G} : D) - \frac{\log M}{2} Dim(G) + O(1)$$

$$= M \sum_{i=1}^{n} \mathbf{I}_{\hat{p}}(X_{i}, Pa_{X_{i}}) - M \sum_{i=1}^{n} \mathbf{H}_{\hat{p}}(X) - \frac{\log M}{2} Dim(G) + O(1)$$

- Bayesian score is consistent

 - As M→∞ the true structure G* maximizes the score
 Spurious edges will not contribute to likelihood and will be penalized
 Required edges will be added due to linear growth of likelihood term relative to M compared to logarithmic growth of model complexity

Priors

Bayesian Score: $Score_B(G:D) \neq log P(D \mid G)$

Structure prior P(G)

Uniform prior: (P(G))∞ constant

 Normalizing constant across networks is similar and can thus be ignored

Priors

Bayesian Score: $Score_B(\widehat{G}:D) = \log P(D \mid G) + \log P(G)$

- Parameter prior P(θ|G)
 - BDe_prior
 - M) equivalent sample size

By prior network representing the prior probability of events $G(x_i, pa_i^G) = M_0 P(x_i, pa_i^G | B_0)$

- - Note: pa_i^c may not the same as parents of X_i in B_0
- Compute $P(x_i, pa_i^G | B_0)$ using standard inference in B_0 BDe requires assessing prior network(B₀)
 - Can naturally incorporate prior knowledge
- BDe is consistent and asymptotically equivalent (up to a constant) to BIC

p(DIGBG)p(BdG)

Summary: Network Scores

- Decomposability
 - Likelihood, BIC, (log) BDe have the form

- All are score-equivalent ←
 - G I-equivalent to $G' \Rightarrow Score(G) = Score(G')$

So far, we discussed scores for evaluating the quality of different candidate BN structures... Let's now examine how to find a structure with a high score.

STRUCTURE SEARCH

Optimization Problem 7<211]. ··· , [1].X>

Input:

■ Training data $D = \{X[1],...,X[M]\} \leftarrow$

- Scoring function (including priors, if needed)
- Set of possible structures (search space) Including prior knowledge about structure

Output:

A network (or networks) that maximize the score

Key Property:

Decomposability: the score of a network is a sum of terms.

$$Score(G: D) = \sum_{i} \underbrace{Score(X_{i} | Pa_{i}^{G} : D)}$$

Learning Trees

- Trees
 - At most one parent per variable
- Why trees?
 - Elegant math

⇒we can solve the optimization problem efficiently (with a greedy algorithm)

Sparse parameterization
 ⇒avoid overfitting while adapting to the data

10

Learning Trees

- Let(p(i)) denote parent of (X_i) or (0) if (X_i) has no parent
- We can write the score as

■ Score = sum of edge scores + constant

Learning Trees

- Algorithm
 - Construct graph with vertices: 1,...,n
 - For all (i,j), set edge score $(w(i \rightarrow j)) = Score(X_i \mid X_i) Score(X_i)$
 - If the score satisfies score equivalence, $(w(i\rightarrow j) = (w(j\rightarrow i)))$
 - Structure learning problem: Find the tree structure with maximum sum of weights ()

 This can be done using standard algorithms in low-order polynomia time by building a tree in a greedy fashion (e.g. Kruskal's maximum spanning tree algorithm)

■ Theorem: Procedure finds the tree with maximal score $\{\text{sum of } w(i \rightarrow j) \text{ for all edges } i \rightarrow j\}$

• When score is <u>likelihood</u>, then $w(i \rightarrow i)$ is proportional to $I(X_i; X_i)$. This is known as the Chow & Liu method. $p(X_i \sim X_i) \approx \prod_{i \in I} p(X_i \mid X_i)$

Beyond Trees

- Problem is not easy for more complex networks
 - Example: Allowing two parents, greedy algorithm is no longer guaranteed to find the optimal network
- Theorem:
 - Finding maximal scoring network structure with at most \bar{k} parents for each variable is NP-hard for k>1
- In fact, no efficient algorithm exists

Fixed Ordering

For any decomposable scoring function Score(G:D)

$$Score(G:D) = \sum Score(X_i | Pa_i^G:D) \leftarrow$$
and ordering (a) the maximal scoring network has:
$$\underbrace{I \vdash X_i \in P_i X_j}_{Pa_i^G} \rightarrow \underbrace{X_i \prec X_j}_{V \subseteq \{X_j:X_j < X_i\}} Score(X_i | \mathbf{U}_i):D)$$

(since choice at X_i does not constrain other choices)

- → For fixed ordering, the structure learning problem becomes a set of independent problems of finding parents of X_i.
- If we bound the in-degree per variable by d, then complexity is exponential in d

Heuristic Search

We address the problem by using heuristic search

- Define a search space:
 - Nodes are possible structures
 - edges denote adjacency of structures
- Traverse this space looking for high-scoring structures
- Search techniques:
 - Greedy hill-climbing
 - Best first search
 - Simulated Annealing
 - ...

Greedy Hill Climbing Pitfalls

- Greedy Hill-Climbing can get stuck in:
 - Local Maxima
 - All one-edge changes reduce the score
 - Plateaus
 - Some one-edge changes leave the score unchanged
 - Happens because I-equivalent networks received the same score and are neighbors in the search space
- Both occur during structure search
- Standard heuristics can escape from both
 - Randomization and restart ←
 - TABU search: Keep a list of recent operators we applied, and in each step, we do not consider operators that reverse the effect of recently applied operators.

20

Model Selection

- So far, we focused on single model
 - Given $D = \{X[1], ..., X[M]\}$, find best scoring model $G = \arg \max_{G} P(G \mid D)$
 - Use it to predict next example $P(X[M+1]|D) \approx P(X[M+1]|D), \tilde{G}$
- Implicit assumption
 - Making predictions based on the Bayesian estimation rule: $P(\mathbf{X}[M+1]|D) = \sum_{G} P(\mathbf{X}[M+1]|D,G) P(G|D)$
 - Best scoring model dominates the weighted sum
 - Valid with many data instances (very large M) ←
- Pros:
 - We get a single structure
 - Allows for efficient use in our tasks
- Cons:
 - We are committing to the independencies of a particular structure
 - Other structures might be as probable given the data

Announcements

- Solution for PS #1 uploaded.
- Typo in Q5 of PS #2
 - Let C_i be some clique such that Scope[φ']...
 - 1 free late day for PS #2 (due 5/3 at noon; CSE536)
- PS #3 is ready (please pick it up).

CSE 515 – Statistical Methods – Spring 2011

21

Acknowledgement

• These lecture notes were generated based on the slides from Prof Eran Segal.

 ${\sf CSE~515-Statistical~Methods-Spring~2011}$