Readings: K&F 18.3, 18.4, 18.5, 18.6

%’| Structure Learning

Lecture 11 — May 2, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Last Time

= Score-based structure learning

= Candidate structures; Score function; Search for the
high-scoring structure

= Scoring functions

= Maximum likelihood score <
= Score (G:D)=log P(D | G, 6';) where 6'; is MLE for G
= Prone to overfitting

= Bayesian score & <:|
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Bayesian Score o) 400)

= Main principle of the Bayesian approach P(;(Mﬂ] 10)
=  Whenever we have uncertainty over anything, place a distribution over it.

= What uncertainty? (G, 8g) p&) fw(:l&)

Prior over structures

Marginal likelihood

[ Marginal probability of Data]

P(D) does not depend on the network

Bayesian Score: Score, (G:D)=IlogP(D|G)+logP(G)

Marginal Likelihood of Data Given G
@>®

Bayesian Score: Score; (G : D) :w +logP(G)

P(D|G)

O
Note similarity to maximum likelihood score, but with
the key difference that ML finds maximum of
likelihood and here we compute average of the terms
over parameter space




Marginal Likelihood: Binomial Case

= Assume a sequence of m coin tosses
= By the chain rule for probabilities o

O, Xim])= POAD) .. POIm] | X[A]....., X[m—1])

leellhood Prior over parameters

P(D|G)= jP(D|G,9@)F>(49G|G)9§>E

&

Marginal Likelihood: Binomial Case

= Assume a sequence of m coin tosses

« Where MM, is number of heads in first m examples

{

PO, .. = 0= L o 2 He




Marginal Likelihood: Binomial Case

P(X,....x[m]) = [ay - (e + My =Dl - (o + My —1)]

ot

| 6 r(x)

a-...(a+M-1)

'

(. xim)) - @) /F<aH+MH>\/r(aT+MT>( Ud
""" Ma+M)\  T(a)

For multinomials with Dirj

Na) 5T(e+M[X])
r(a+|v|)'1;[ Me) |
O

Marginal Likelihood: BayesNets

= Network structure @ 1 2 3 4 5 ¢

determines form of

S T Hl T| 17| H| T|H
marginal likelihood

tvt\:

P(D|G) yig| il Al A 7| T

M 1 1 1 1 1 1

Network 1: T%é Dirichlet marginal likelihoods NetworkGO

o) — ®

\




Marginal Likelihood: BayesNets

= Network structure D 1 2 3 4 5 ¢
determines form of e

X
marginal likelihood a
P(D]G) /V/—/T/—/HTT
|

L —— —

¥ | N

Network 2: Three Dirichlet marginal likelihoods Ngth”@

oy f—
Np(Y[2]Y[3]V[5]) < ﬂ \ 2
\KL_V_L@)) F(Vl&‘))_} X - H T an /
AN e 2t

= As we get more data, the Bayesian score prefers
G1 where X and Y are dependent. 10




Marginal Likelihood: BayesNets

The marginal I|keI|hood has the form

“Decompgsa ﬁ &f l?a)(z,e“)?(%ﬁ

Gl“ka G+M[pa ] (axi,pag)
Mr I

For the sequence of values of X; when
X/'s parents have a particular value

~ \/
O <D'E'iEEIet Marginal Likelihog_zp

= M(..) are the counts from the data
= «a(..)are hyperparameters for each family
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Bayesian Score: Asymptotic Behavior

8 For@aoo, a network G with Dirichlet priors satisfies
logM
2

logP(D|G)=1(4, : D) - DIm(G) +O(1)

Dim(G).: number of independent parameters in G

= Score exhibits tradeoff betweer@ and

= Mutual information grows linearly with M while complexity
grows logarithmically with M

= As M grows, more emphasis is given to the(fit to the dat2? <
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Bayesian Score: Asymptotic Behavior
= For M>«, a network G with Dirichlet priors satisfies

logP(D|G)=1(4, : D) -

'092'\" DIm(G) +O(1)

IOgTMDim(G) o@)

=Mi|ﬁ(xi,PaXi)—MiHﬁ(X -

= Bayesjan score is consistent<”
. As the true structure G* maximizes the score
i- Spurious e will not contribute t 1 and will be penalized

Required will be added due to linear growth of likelihood term

relative to M compared to logarithmic growth of model complexity -
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Priors

Bayesian Score. Score, (G : D)=(Iog P(D G)}L

= Structure prior P G) l4
l(&) P
= Uniform prlor constan
= Prior penalizing num o ciéF (0<c<1)

= Normalizing constant across networks is similar and
can thus be ignored
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Priors

Bayesian Score: Scorey(Q: D) = log P(D|G) +log P(G)
M————— "

= Parameter prior P(0|G)

= BDe prior
@)\ equivalent sample size
(B,) prior network representing
Selldx0as)- MiPLigas) )
Note: pa’® may n ot the same as parents of X; i
Compsing standard inference jn By
= BDe requires assessing prior network
Can naturally incorporate prior knowledge

= BDe is consistent and asymptotically equivalent (up to a
constant) to BIC
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Summary: Network Scores

» Decomposability 2
= Likelihood, BIC, (log) BDe have the form
score(@): D) = D (Score(X;)| Pa® : D) X

= All are score-equivalent €
« (@) I-equivalent to G'=> Score(G) = Score(G?)
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So far, we discussed scores for
evaluating the quality of different
candidate BN structures... Let’s now
examine how to find a structure with
a high score.

STRUCTURE SEARCH

17

Optimization Problem

ALY, - AlB>
Input:

= Training data D = {X[1 ,...,X[:@]}é
= Scoring function (including priors, if needed)
= Set of possible structures (search spaceff—

= Including prior knowledge about structure

Output:
= A network (or networks) that maximize the score

Key Property:
= Decomposability: the score of a network is a sum of terms.

Score(@: D) = Z core(X, | Pa®: D)
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Learning Trees

= Trees
= At most one parent per variable

= Why trees?

= Elegant math

—we can solve the optimization problem efficiently
(with a greedy algorithm)

= Sparse parameterization
=avoid overfitting while adapting to the d

19

Learning Trees

. Let@ denote parent of@ or@ if(:}has no parent

= We can write the score as

Score(G: D) =(» Score(X. : Pa,
(6:D) =] Seore(; :Pa)

Y/
= Score = gum of edae scores\)+ @

20




Learning Trees

= Algorithm
= Construct graph with vertices: 1,...,n

= Structure learning problem: Find the tree structure wi
\ maximurm-sum of weightsStw ¢=*¢)
= Solve an undirected spanning tree (forest) problem and determine
> directions of edges afterwards.

= This can be done using standard algorithms in low-order polynomial
time b ing a tree in a greedy fashion
l/% w (e Kruskald maximum spanning tree algathm) 3

= Theorem: Procedure finds the tree with maximal score }
(sum of w(i—j) for all edges /—))

= When score isdikeli
m This is known as th
K
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Learning Trees: Example

Tree learned from data =~ @emis Z
@ sampled from the G T
ICU-Alarm networkuwur)

D = {X[1],...,X[M]}

HYPOVDLEMIA LVFAILURE
v ~
LVEDVOLUME S‘IROEVOLUME rstory) CErraLowouTPur ( m ERRCAUTER

Correct edges @Q @ } .
= Spurious edges ®

Not every edge in tree is in the original network
Tree direction is arbitrary --- we can’t learn about arc direction
22




Beyond Trees

= Problem is not easy for more complex networks

= Example: AIIowing@ parents, greedy algorithm is no
longer guaranteed to find the optimal network
NN A~ —

s Theorem:

= Finding maximal scoring network structure with at
most 4 parents for each variable is NP-hard for k>1

= In fact, no efficient algorithm exists
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Fixed Ordering

= For any decomposable scoring function Score(G:D)
Score(G: D) =) Score(X; | Pa’® : D) «

andthe aximal sc wrgg network has:

ey = X WS ¢

Pa’ = arg max . Score(X. (:5 D
i g U XX <X} ( || )

(since choice at X; does not constrain other choices)

- For fixed ordering, the structure learning problem
becomes a set of independent problems of finding
parents of X.

= If we bound thw by d, then
complexity ISW ind




Heuristic Search
We address the problem by using heuristic search

= Define a search space:
. are possible structures
. enote adjacency of structures

= Traverse this space looking for high- scorlng "’

structures
o 9
= Search techniques: ’0 ®
= Greedy hill-climbing \

¢.'O @
= Best first search
» Simulated Annealing

oI Search space

Heuristic Search

= Typical operations: @ @
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Exploiting Decomposability

= Caching: To update the sc fter a local change, we
only need to re-score th€ families that were chan:aea
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Greedy Hill Climbing

= Simplest heuristic local search network

= Start with a given network
= empty network <«
= best tree (tree learning)4é—
= a random network<—

= At each iteration
= Evaluate all possible changes
= Apply change that leads to best improvement in score
= Reiterate

= Stop when no modification improves score
= Each step requires evaIuating@@) new changes

28




Greedy Hill Climbing Pitfalls

= Greedy Hill-Climbing can get stuck in:

= Local Maxima
= All one-edge changes reduce the score

= Plateaus
= Some one-edge changes leave the score unchanged
= Happens becausd I-equiva received the same

score and are neighbors in the search space
= Both occur during structure search

= Standard heuristics can escape from both
= Randomization and restart <—

. @: Keep a list of recent operators we applied, and in
each step, we do not consider operators that reverse the effect of
recently applied operators.
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Model Selection

= So far, we focused on single model
= Given D={X[1],...,X[M]}, find best scoring model
T Goagmax,@(G[D) ¢
= Use it to predict next example @(X[M +1]|D z
= Implicit assumption
= Making predictions based-on BaYesian estimation rule:
P(X[M +1]| D) = )

=« Valid with many data instances (very large M) €
= Pros:
= We get a single structure
= Allows for efficient use in our tasks
= Cons:

= We are committing to the independencies of a particular
structure




Announcements
= Solution for PS #1 uploaded.

= Typo in Q5 of PS #2
» Let C be some clique such that Scope[¢7]...

= 1 free late day for PS #2 (due 5/3 at noon; CSE536)

= PS #3 is ready (please pick it up).
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