Readings: K&F 18.3, 18.4, 18.5, 18.6

%’| Structure Learning

Lecture 11 — May 2, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Last Time

= Score-based structure learning

= Candidate structures; Score function; Search for the
high-scoring structure

= Scoring functions

= Maximum likelihood score
= Score (G:D)=log P(D | G, 6';) where 6'; is MLE for G
= Prone to overfitting

= Bayesian score <:|
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Bayesian Score

= Main principle of the Bayesian approach
=  Whenever we have uncertainty over anything, place a distribution over it.
= What uncertainty? (G, ;)

Marginal likelihood Prior over structures

P(G|D)= P(DFL?S;’(G)

[ Marginal probability of Data]

P(D) does not depend on the network

Bayesian Score: Score, (G:D)=IlogP(D|G)+logP(G)

Marginal Likelihood of Data Given G

Bayesian Score: Score,(G:D)=logP(D|G)+logP(G)

Likelihood Prior over parameters
Marginal likelihood

P(D|G) [P(D]G,68:)P(6; |G)d6,

b6

Note similarity to maximum likelihood score, but with
the key difference that ML finds maximum of
likelihood and here we compute average of the terms
over parameter space




Marginal Likelihood: Binomial Case

= Assume a sequence of m coin tosses @
= By the chain rule for probabilities

POXL,.... X[m]) = POL)-...- POIM] | X[, x[m —1])

Likelihood Prior over parameters

P(D|G) = [P(D|G,6)P(6; |G)db,

b6

Marginal Likelihood: Binomial Case

= Assume a sequence of m coin tosses @
= By the chain rule for probabilities

POXL,.... X[m]) = POL)-...- POIM] | X[, x[m —1])

= Recall that for Dirichlet priors

P(M+1]=H | X[]...., X[m]) = nm—Jera

« Where MM, is number of heads in first m examples

{

POIY,.. ) = =t =l o 2 B




Marginal Likelihood: Binomial Case

e

Simplify using I'(x+1)=xI"(x)

(@)(@+D) (@ +M-1)= r(?(;')\/')
\
PO, .xf) = — (@) T (@ *My,) Ter + M)
..... Ca+M)  T(ay) I(a;)

For multinomials with Dirichlet prior

M@)o +MIX])
@ L)

Marginal Likelihood: BayesNets

= Network structure D 1 2 3 4 5 6 7
deter_mlne_s fo_rm of e
marginal likelihood >
P(D|G) YIH| T|H|H| T| T|H

Network 1: Two Dirichlet marginal likelihoods =~ Network GO

P(X[1],..., X[7]) == ®

P(Y[1],...,Y[7]) @




Marginal Likelihood: BayesNets

= Network structure D 1 2 3 4 5 ¢

7
deter_mine_s fqrm of ey |
marginal likelihood >
P(D|G) y [l e

| —— — = |

Network 2: Three Dirichlet marginal likelihoods Network G1

P(X[1],...X[7]) r—
P(Y[1]Y[4]Y[6]Y[7])
P(Y[2]Y[3]Y[5]) —_—
Idealized Experiment
> = P(X=H)=0.5 Network GO
= P(Y =H|X =H) = 0.5 +p )

P(Y=H|X=T)=05-p

®
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= As we get more data, the Bayesian score prefers
G1 where X and Y are dependent.

fury
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Marginal Likelihood: BayesNets

The marginal likelihood has the form:
“Decomposability” of Bayesian Score

(apa ) 1—‘(le paG +M [XI’ pa ])
P(D|G)= HH (apa +M[pa )1;[ F(aXi’paQ)
e —~ —

Dirichlet Marginal Likelihood
For the sequence of values of X; when
X{'s parents have a particular value

il | ELE o B

where
= M(..) are the counts from the data

= «a(..)are hyperparameters for each family
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Bayesian Score: Asymptotic Behavior
= For M>«, a network G with Dirichlet priors satisfies

logP(D|G)=1(4, : D) - DIm(G) +O(1)

logM
2
Dim(G).: number of independent parameters in G

= Approximation is called BIC score
'°92M DIM(G)

Score,.(G:D) =1(4,:D)-

= Score exhibits tradeoff between fit to data and complexity

= Mutual information grows linearly with M while complexity
grows logarithmically with M
= As M grows, more emphasis is given to the fit to the data
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Bayesian Score: Asymptotic Behavior
= For M>«, a network G with Dirichlet priors satisfies

logP(D|G)=1(4, : D) '092'\" DIm(G) +0(Q)
_ Milﬁ(xi,PaXi)_MiHﬁ(xi)_ IOgZM DIm(G)+0(1)

= Bayesian score is consistent
= As M>w, the true structure G* maximizes the score

= Spurious edges will not contribute to likelihood and will be penalized

= Required edges will be added due to linear growth of likelihood term
relative to M compared to logarithmic growth of model complexity
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Priors

Bayesian Score. Score; (G:D)=logP(D|G)+logP(G)

= Structure prior P(G)
= Uniform prior: P(G) « constant
= Prior penalizing number of edges: P(G) o cl¢l (0<c<1)

= Normalizing constant across networks is similar and
can thus be ignored
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Priors

Bayesian Score. Score; (G:D)=logP(D|G)+logP(G)

= Parameter prior P(0|G)

= BDe prior
= M,: equivalent sample size
= By: prior network representing the prior probability of events
= Set a(x;paf) = MyPlx,paf/ By)
Note: pa® may not the same as parents of X; in By
Compute P(x,paf/ B,) using standard inference in B,
= BDe requires assessing prior network B,
Can naturally incorporate prior knowledge
= BDe is consistent and asymptotically equivalent (up to a
constant) to BIC
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Summary: Network Scores

» Decomposability
= Likelihood, BIC, (log) BDe have the form

Score(G: D) =) Score(X; | Pa® : D)

= All are score-equivalent
= G I-equivalent to G'= Score(G) = Score(G?)
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So far, we discussed scores for
evaluating the quality of different
candidate BN structures... Let’s now
examine how to find a structure with
a high score.

STRUCTURE SEARCH
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Optimization Problem

Input:
» Training data D = {X[1],...,X[M]}
= Scoring function (including priors, if needed)

= Set of possible structures (search space)
= Including prior knowledge about structure

Output:
= A network (or networks) that maximize the score

Key Property:
= Decomposability: the score of a network is a sum of terms.

Score(G: D) =) Score(X; | Pa® : D)
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Learning Trees

= Trees
= At most one parent per variable

= Why trees?

= Elegant math

—we can solve the optimization problem efficiently
(with a greedy algorithm)

= Sparse parameterization
=avoid overfitting while adapting to the data
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Learning Trees

= Let p(i) denote parent of X, or 0 if X;has no parent
= We can write the score as

Score(G: D)= Score(X; : Pa,)

D Score(X; : X )+ D_Score(X;)
i:p(i)>0 i:p(i)=0
Z(Score(xi - X p(i))—Score(Xi))+ZScore(Xi)

i:p(i)>0

= Score = sum of edge scores + constant
20




Learning Trees

= Algorithm
= Construct graph with vertices: 1,...,n
= For all (i,j), set edge score w(i=j) = Score(X; | X;) - Score(X;)
= If the score satisfies score equivalence, w(i—j) = w(j—»i)

= Structure learning problem: Find the tree structure with
maximum sum of weights.

= Solve an undirected spanning tree (forest) problem and determine
directions of edges afterwards.

= This can be done using standard algorithms in low-order polynomial
time by building a tree in a greedy fashion
(e.g. Kruskal’s maximum spanning tree algorithm)

= Theorem: Procedure finds the tree with maximal score
(sum of w(i—j) for all edges /—))

= When score is likelihood, then w(i—j) is proportional to
I(X; X;). This is known as the Chow & Liu method.
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Learning Trees: Example

Tree learned from data  @hesid> Gy

1
@ DISCOMNVECT
A ”

N

VENITUBE

D sampled from the
ICU-Alarm network

D = {X[1],.... X[M]}

HYPOVDLEMIA LVFAILURE
v ~
LVEDVOLUME S‘IROEVOLUME rstory) CErraLowouTPur ( m ERRCAUTER

Correct edges @Q @ } .
= Spurious edges ®

Not every edge in tree is in the original network
Tree direction is arbitrary --- we can’t learn about arc direction
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Beyond Trees

= Problem is not easy for more complex networks

= Example: Allowing two parents, greedy algorithm is no
longer guaranteed to find the optimal network

s Theorem:

= Finding maximal scoring network structure with at
most 4 parents for each variable is NP-hard for k>1

= In fact, no efficient algorithm exists
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Fixed Ordering

= For any decomposable scoring function Score(G:D)
Score(G: D) =) Score(X; | Pa® : D)
and ordering o the maximal scoring network has:

Pa7 =argmax, g, x .x; Score(X; |U; : D)
(since choice at X; does not constrain other choices)

- For fixed ordering, the structure learning problem
becomes a set of independent problems of finding
parents of X.

= If we bound the in-degree per variable by d, then

complexity is exponential in d 5




Heuristic Search
We address the problem by using heuristic search
= Define a search space:

= hodes are possible structures
= edges denote adjacency of structures

= Traverse this space looking for high-scoring o e
structures

= Search techniques: ?
= Greedy hill-climbing
= Best first search &
» Simulated Annealing E

. Search space
25

Heuristic Search

= Typical operations: @ @
< ©
A B >

C R
A Q|
oe? Q Ssec
o 8
26
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Exploiting Decomposability

>
(@)
>
@

©
o)

= Decomposability:  Score(G: D) =ZScore(Xi | PaiG :D)

= Caching: To update the score after a local change, we

only need to re-score the families that were changed
27

Greedy Hill Climbing

= Simplest heuristic local search network —> @
= Start with a given network

= empty network
= best tree (tree learning) < Dok 8 30
= a random network
= At each iteration
= Evaluate all possible changes

= Apply change that leads to best improvement in score
= Reiterate

= Stop when no modification improves score
= Each step requires evaluating O(n?) new changes




Greedy Hill Climbing Pitfalls

= Greedy Hill-Climbing can get stuck in:
» Local Maxima
= All one-edge changes reduce the score
= Plateaus

= Some one-edge changes leave the score unchanged

= Happens because I-equivalent networks received the same
score and are neighbors in the search space

= Both occur during structure search

= Standard heuristics can escape from both
= Randomization and restart

= TABU search: Keep a list of recent operators we applied, and in
each step, we do not consider operators that reverse the effect of
recently applied operators.
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Model Selection

= So far, we focused on single model

= Given D={X[1],...,X[M]3}, find best scoring model

G= argmaxg P(G|D)

= Use it to predict next example P(X[M +1]| D) ~ P(X[M +1]| D,G)
= Implicit assumption

= Making predictions based on the Bayesian estimation rule:

P(X[M +1]| D)= > _P(X[M +1]| D,G)P(G| D)
= Best scoring model dominates the weighted sum
« Valid with many data instances (very large M)

= Pros:

= We get a single structure

= Allows for efficient use in our tasks
= Cons:

= We are committing to the independencies of a particular
structure




Announcements
= Solution for PS #1 uploaded.

= Typo in Q5 of PS #2
» Let C be some clique such that Scope[¢7]...

= 1 free late day for PS #2 (due 5/3 at noon; CSE536)

= PS #3 is ready (please pick it up).
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