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Lecture 12 – May 4, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Learning with Partially 
Observed Data

Readings: K&F 18.6, 19.1, 19.2

Model Selection
So far, we focused on single model

Given D={X[1],…,X[M]}, find best scoring model
Use it to predict next example

Implicit assumption
Making predictions based on the Bayesian estimation rule:

Best scoring model dominates the weighted sum

Valid with many data instances (very large M)

Pros:
We get a single structure
Allows for efficient use in our prediction tasks

Cons:
Committing to the independencies of a particular structure
Other structures with similar score might be probable given D
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Model Selection
Density estimation

Picking one structure may suffice if it distribution                          
is similar for different high-scoring structures. 

Structure discovery
Several networks with similar scores → one or several of them 
might be close to the “true” structure, but we cannot distinguish 
between them given the data D.
Drawing a conclusion about the structure from one of the networks 
can be wrong
Thus, instead of picking one of the high-scoring structures, we 
should focus on estimating the “confidence” of the structural 
properties we are interested in.
Define features f(G) (e.g., edge, sub-structure, d-sep property)
Compute 

Requires summing over exponentially many structures
We can reduce the computation assuming a certain ordering
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Model Averaging Given an Order
Assumptions

Known total order of variables α
Maximum in-degree for variables d

Marginal likelihood
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Cost per family: O(nd)

Total cost: O(nd+1) 
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Using decomposability 
assumption on prior P(G|α)

Since given ordering α, parent 
choices are independent
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Model Averaging Given an Order
Posterior probability of a general feature f

f: particular choice of parents U for Xi

f: existence of a particular edge between Xj → Xi
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Model Averaging
We cannot assume that order is known

Solution: Sample from posterior distribution of P(G|D)
If we manage to sample graphs G1,..,GK from P(G|D)

Estimate feature probability by 

Sampling can be done by MCMC (Markov chain Monte Carlo)
Next week
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Notes on Learning Local Structures
Beyond table CPDs

Define score with local structures
Example: in tree CPDs, score decomposes by leaves (not by Xi
and a particular value on Par Xi)

Prior may need to be extended
Example: in tree CPDs, penalty for tree structure per CPD 
(depth of the tree)

Extend search operators to local structure
Example: in tree CPDs, we need to search for tree structure
Can be done by local encapsulated search or by defining new 
global operations
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Structure Search: Summary
Discrete optimization problem

In general, NP-Hard
Need to resort to heuristic search

In practice, search is relatively fast (~100 vars in ~10 min):
Decomposability

Sufficient statistics

In some cases, we can reduce the search problem to 
an easy optimization problem

Example: learning trees, a fixed ordering α

8



5

LEARNING WITH PARTIALLY 
OBSERVED DATA

Let’s turn to the main topic for today…

9

Training Data D

Until now, we assumed that the training data is fully observed
Each instance assigns values to all the variables in our domain
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Incomplete Data
In reality, this assumption might not be true.

Missing values, Hidden variables

Challenges
Foundational – is the learning task well defined?
Computational – how can we learn with missing data?
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Treating Missing Data
How should we treat missing data?

Based on data missing mechanism

Case I: A coin is tossed on a table, occasionally it drops 
and measurements are not taken (random missing)

Sample sequence: H,T,?,?,T,?,H
Treat missing data by ignoring it

Case II: A coin is tossed, but only heads are reported 
(deliberate missing values)

Sample sequence: H,?,?,?,H,?,H
Treat missing data by filling it with Tails

We need to consider the data missing mechanism
12
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Modeling Data Missing Mechanism
Let’s try to model the data missing mechanism

X = {X1,...,Xn} are random variables

OX = {OX1
,...,OXn

} are observability variables
Always observed

Y = {Y1,...,Yn} new random variables
Val(Yi) = Val(Xi) ∪ {?}
Yi is a deterministic function of Xi and OX1
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Modeling Missing Data Mechanism
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(random missing values)
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Modeling Missing Data Mechanism

ψ

X

θ

OX

Case I
(random missing values)
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(deliberate missing values)

( ) ?)1(1()1()1(),:( ||||
M

TOHO
M

TO
M

HO
MM

XX

T

X

H

X

THDL ψθψθψψθθψθ −−+−⋅⋅⋅−⋅=

)1)(1()1(?)(
)1()(

)(

||

|

|

TOHO

TO

HO

XX

X

X

YP
TYP
HYP

ψθψθ
ψθ

θψ

−−+−==
−==

==

Y Y

TH

H

MM
M
+

=θ̂

?

ˆ
MMM

MM

TH

TH

++
+

=ψ
?

MLE ?

Decoupling of Observation Mechanism
When can we ignore the missing data mechanism and 
focus only on the likelihood?

Missing Completely at Random (MCAR)
For every Xi, Ind(Xi;OXi

), a very strong assumption
Sufficient but not necessary for the decomposition of the likelihood

Missing at Random (MAR) is sufficient
The probability that the value of Xi is missing is independent of its 
actual value, given other observed values

In both cases, the likelihood decomposes
When there are missing values in D, try to model such that 
MAR holds.

16
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Incomplete Data
In reality, this assumption might not be true.

Missing values, Hidden variables

Challenges
Foundational – is the learning task well defined?
Computational – how can we learn with missing data?
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Hidden (Latent) Variables
Attempt to learn a model with hidden variables

In this case, MCAR always holds (variable is always 
missing)

Why should we care about unobserved variables?

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

17 parameters 59 parameters
18
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Hidden (Latent) Variables
Hidden variables also appear in clustering

Naïve Bayes model:
Class variable is hidden
Observed attributes are
independent given the class

Cluster

X1 ...X2 Xn

Hidden

Observed
possible missing values
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Likelihood for Complete Data

P(Y|X)
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Likelihood decomposes by variables

Likelihood decomposes within CPDs

Likelihood function is log-concave → unique global 
maximum that has a simple analytic closed form. 21

Likelihood for Incomplete Data

P(Y|X)
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Likelihood does not decompose by variables

Likelihood does not decompose within CPDs

Computing likelihood per instance requires inference!
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Likelihood with Missing Data
Multimodal likelihood function with incomplete data

Likelihood function is not log-concave → local maxima 
cannot be obtained by a simple analytic closed form

CSE 515 – Statistical Methods – Spring 2011 23

Gradient Ascent:
Follow gradient of likelihood w.r.t. to parameters
Add line search and conjugate gradient methods to get fast convergence

L(
D

|Θ
)

MLE from Incomplete Data

Take steps proportional to the positive of the gradient.

Θ

24
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Expectation Maximization (EM):
Use “current point” to construct alternative function (which is “nice”)  
Guaranty: maximum of new function has better score than current point

MLE from Incomplete Data

Nonlinear optimization problem

Θ

L(
D

|Θ
)
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Gradient Ascent and EM
Find local maxima
Require multiple restarts to find approx. to the global maximum
Require computations in each iteration

MLE from Incomplete Data

Nonlinear optimization problem

Θ

L(
D

|Θ
)
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Gradient Ascent
Theorem:

Proof:
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Gradient Ascent

Requires computation: P(xi,pai|o[m],Θ) for all i, m

Can be done with clique-tree algorithm, since Xi,Pai
are in the same clique
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Pai

Xi

Gradient Ascent Summary
Pros

Flexible, can be extended to non table CPDs

Cons
Need to project gradient onto space of legal parameters
For reasonable convergence, need to combine with 
advanced methods (conjugate gradient, line search)

30
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Expectation Maximization (EM)
Tailored algorithm for optimizing likelihood functions

Intuition
Parameter estimation is easy given complete data

Computing probability of missing data is “easy” (=inference) 
given parameters

Strategy
Pick a starting point for parameters

“Complete” the data using current parameters

Estimate parameters relative to data completion

Iterate

Procedure guaranteed to improve at each iteration
31

Expectation Maximization (EM)
Initialize parameters to θ0

Iterate E-step and M-step

In the t-th iteration, we do
Expectation (E-step):

Let o[m] be the observed data in the m-th training instance. 
For each m and each family Xi,Pai , compute P(Xi,Pai | o[m], θ(t))
Compute the expected sufficient statistics for each values x, u on 
Xi,Pai, respectively.

Maximization (M-step):
Treat the expected sufficient statistics as observed and set the 
parameters to the MLE with respect to the ESS
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Expectation Maximization (EM)

X

Y

X Y

? y0

x0 y1

? y0

Training data

Initial network

+ E-Step
(inference)

Expected counts

N(X)

N(X,Y) M-Step
(reparameterize)

X

Y

Updated network

Iterate
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Expectation Maximization (EM)
Formal Guarantees:

L(D:Θ(t+1)) ≥ L(D:Θ(t))
Each iteration improves the likelihood

If Θ(t+1)=Θ(t) , then Θ(t) is a stationary point  of L(D:Θ)
Usually, this means a local maximum

Main cost:
Computations of expected counts in E-Step
Requires inference for each instance in training set

Exactly the same as in gradient ascent!

Reading material on EM
Please read Andrew Ng’s lecture note

34
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EM – Practical Considerations
Initial parameters

Highly sensitive to starting parameters
Choose randomly
Choose by guessing from another source

Stopping criteria
Small change in data likelihood
Small change in parameters

Avoiding bad local maxima
Multiple restarts
Early pruning of unpromising starting points

35
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