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Model Selection

= So far, we focused on single model
. Given@={X[1],...,X[M]}, find best scoring model G =arg max, P(G|D
= Use it to predict next example P(X[M +1]| D,G) T
Implicit assumption
= Making predictions based on the Bayesian estimation rule:

FPXIM YD) =Y PXIM +1]] D,G) PG L D)

= Best scoring model dominates the weighted sum

P(X[M +1]|D) ~ P(X[M +1]| D@

« Valid with many data instances (very large M)
n Pros:
= We get a single structure
= Allows for efficient use in our prediction tasks
= Cons:
= Committing to the independencies of a particular structure
= Other structures with similar score might be probable given D




Model Selection

= Density estimation
= Picking one structure may suffice if it distribution P(X[M +1]| D,G)
is similar for different high-scoring structures.
= Structure discovery

= Several networks with similar scores - one or several of them
might be close to the “true” structure, but we cannot distinguish
between them given the data D.

= Drawing a conclusion about the structure from one of the networks
can be wrong

= Thus, instead of picking one of the high-scoring structures, we
should focus on estimating the “confidence” of the structural
properties we are interested in.

= Define featuresi@_) (e.g., edge, ture, d-sep property)
= Compute  p(f|D) &b
Mt~

= Requires summing over exponentially many structures
= We can reduce the computation assuming a certain ordering

Model Averaging Given an Order

= Assumptions Ko Koo s X \E) Ky X, X,
~—_
= Known total order of variables(o)
= Maximum in-degree for variables@e—

= Marginal "ke"hOOdP €0, G00) Using decomposability
assumption on prior P(G|a)
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Model Averaging Given an Order

= Posterior probability of a general feature f

/F 7 2 T(G)P(D|G)P(G|a)
p(f| D) _@ G;aa '}&

~——== " POIad$(J] Y.exp{FamScore,(X;[U,: D)}

Ue{U:U<X, ea |U|<d}

= f: particular choice o_for@

_ exp{FamScore, (X, |U : D)} All terms
> exp{FamScore, (X, |U, : D)} \ cancel out

U<{U:U<X; ea JUl<d}

P(X, ePa |D,q) =& '
(X;ePay |D,a) Zexp{FamSCOI’e (X;U;: D)} }(/

Ue{U:U<X, ea JUl<d} 5

Model Averaging

= We cannot assume that order is known &

= Solution: Sample from posterior distribution of P(G|D)
= If we manage to sample graphfrom P(GID

= Estimate feature probability byg

= Sampling can be done by\MgM_C_(Markov chain Monte Carlo)

« Next week G Qe — ﬁo_




Notes on Learning Local Structures

Y
Beyond table CPDs / ®u@
®

Define score with local structures <& g7 wH

=« Example: in tree CPDs, score decomposes by leaves (not by X;
and a particular value on Par X;)

Prior may need to be extended
= Example: in tree CPDs, penalty for tree structure per CPD

(depth of the tree)

= Extend search operators to local structure
= Example: in tree CPDs, we need to search for tree structure

= Can be done by local encapsulated search or by defining new

global operations
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Structure Search: Summary

= Discrete optimization problem

= In general, NP-Hard
= Need to resort to heuristic search

= In practice, search is relatively fast (511,‘19\“;5 in

= Decomposability €—
« Sufficient statistics €

= In some cases, we can reduce the search problem to
an easy optimization problem

« Example:Jearning trees, a fixed ordering o




Let’s turn to the main topic for today...

LEARNING WITH PARTIALLY
OBSERVED DATA

Training Data D

Training instance

-111100298 ...
10072365 ..
01082123..
-2/1301345 ..

= Until now, we assumed that the training data is fully observed
= Each instance assigns values to all the variables in our domain
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Incomplete Data

= In reality, this assumption might not be true.
Training instance

X; [316)-111(20298...
X, [17)1 10072365 ..
X; 1001(2)1082¢R3...
X, [125-2%D1345..

Lung cancer?
\/\w

X | T 7T T T 0 9275222 D
Xy [07427

= Missing values, Hidden variables

= Challenges
= Foundational — is the learning task well defined? j
= Computational — how can we learn with missing data?

11

Treating Missing Data

= How should we treat missing data?
= Based on data missing mechanism @

= Case I: A coin is tossed on a table, occasionally it drops
and measurements are not taken (random missing)
= Sample sequence:(H,T\2,?,T,?,
= Treat missing data by jgnoring it

= Case II: A coin is tossed, but only heads are reported
(deliberate missing values)
= Sample sequence: H,?,?,?,H2H

» Treat missing data by filling it with Tails

We need to consider the data missing mechanism
12




Modeling Data Missing Mechanism

Let’s try to model the data missing mechanism

= Always observed

Y = {Y;,...,.Y.1)new random variables

- Val(Y) (mm»

= Y isa deterministic function of X; and Oy,

{xi ox_zol}
Y.= W Al
: ?2 0, =0°
A S — 13

Modeling Missing Data Mechanism

Case I Case II
(random missing values) (deliberate missing values)

P =H) <oy)
P =T) =(-o)) "

ng ?)




Modeling Missing Data Mechanism

Case ]
(random missing values)

Case 11

(deliberate missing values)

') '
‘//o H +(1 ‘9) Yo |T

L(D:0,y)= QMH (1 o' - l//OX|H ‘//oX|T 0(1 Woun) + (- ‘9(1 l//OX|T) "

Decoupling of Observation Mechanism

= When can we ignore the missing data-mechanism and
focus only on the likelihood? (=£®) 40P
?. Missing Cc@etel Random (MCAR) ¢—

= For eve Ind(X);0)), a very strong assumption
= Sufficient bu

t not necessary for the decomposition of the likelihood
Missing at Random (MAR) is su&;ﬁient <

n
= The probability that the value of X;jis missing is independent of its
actual value, giver other observed values Oy

= In both cases, the likelihood decomposes
« When there are missing values in D, try to model such tha
(MAR’holds. 3{ —

o

= \\QD
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Incomplete Data

Xy 131?2-11120298 ..
X, 11?71 10072365...
X3 1001 71082723..
X, |125-2701345 ...

Lung cancer?

L
Xn1(22222292722222222 Y |¢

Xy 107427

= Missing values, Hidden variables

17

Hidden (Latent) Variables

= Attempt to learn a model with hidden variables
= In this case, MCAR always holds (variable is always

missing) MARE gf (’ ®

R

= Why should we care about unobserved variables?

W g
%)
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Hidden (Latent) Variables

= Hidden variables also appear in clustering

= Naive Bayes model:
= Class variable is hidden

= Observed attributes are
independent given the class

JANANVAN
00
72
8 2
17
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H [1281B3112211.. |—
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How do missing data affect the likelihood
function?
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Likelihood for Complete Data
D

Input
Data: 9
-

PYTX)
Yo
e
9010 Oy1p0 )

AV4 1
— A WP Xt Oyt Oyt
= Likelihood decomposes by variables —

= Likelihood decomposes within CPDs

sLikelihood function is log-concave — unique global
maximum that has a simple analytic closed form.

Likelihood for Incomplete Data

i EEEA PCY
I n p ut ? _QIS) x0 x1
D a ta : %}r y1 0y0 Oy

™ )

A /AN Ao

| 2 P ey ‘
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X
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X Oyopt By1a

0,1
yoIx

= Likelihood does not decompose by variables
= Likelihood does not decompose within CPDs /
= Computing likelihood per instance requires inference! l;
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Likelihood with Missing Data

= Multimodal likelihood function with inc data

= Likelihood function is not log-concave —\local maxi
cannot be obtained by a simple analytic closed form

\ 4 GM”‘Q"“E—
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MLE from Incomplete Data

= Take steps proportional to the positive of the gradient.

% ,"Jk/

.
) ‘

L(D|®

I\

| - TF= N >
éé)s_, 5 4 .
6 \%ﬂ\\ewp o G2
Gradient Ascent:

= Followgradient of likelihood w.r.t. to parameters
= Add and ¢onjugate gradient methods to get fast convergence
24




MLE from Incomplete Data

= Nonlinear optimization problem

S

L(D|®)

I — \
6-0°"" 2)
Expectation Maximization (EM):
= Use “current point” to construct alternative function (which is “nice”)

= Guaranty: maximum of new function has better score than current point
25

MLE from Incomplete Data

= Nonlinear optimization problem

J

/\

<

L(D|®)

= Require computations in each iteration

26




Gradient Ascent v (Pap

Pa; W T
9%

s Theorem:

B 1 oP(o[m]| ®)
‘; P(o[m]|®) 06,

How do we compute ? Pm} 6)
Xi, P&
27

Gradient Ascent (Pay

logP(D | ®)

_~ 0log P(o[m]| ®)
B ; 89Xirpai

B 1 oP(o[m]| ®)
- Z P(o[m]|®) 6, ,.
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Gradient Ascent (Pa)

OIogP(DI6) - 1 aP(EIm]|®) (%)
00, ... S P(o[m]|®) 06

Xi, pa

— Z 1 P(Xi » P&, O[m] | ®)

- bz (00 9
= e

Oz o

= Can be done with clique-tree algorithm, since X, Pa;

are in the same clique
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Gradient Ascent Summary

= Pros
= Flexible, can be extended to non table CPDs

L=+(0)

= Cons s
= Need to project gradient onto space of legal parameters

= For reasonable convergence, need to combine with
advanced methods (canj adi ine seareh)

30




Expectation Maximization (EM

= Tailored algorithm for optimizing(likelihood functio

» Intuition % v X
= \Parameter estimationJs easy given complete data

= Computing probability of missing data js,"easy” (=inference)
given parameters

wmww
V;
™ WL‘t

= Procedure guaranteed to improve at each |terat|on 2

Expectation Maximization (EM)

= Initialize parameters to 00
= Iterate E-step and M-step

= In the t-th iteration, we do

= Expectation (E-step):
= Let o[m] be the observed data in the m-th training instance.
« For each m and each family X;,Pa; , compute P(X;,Pa; | o[m], 6®)
= Compute the expected sufficient statistics for each values x, u on
Xi,Pa,, respectively.

[X, =x,Pa, =u]= ZP(X =x,Pa, =u|o[m],6")

9“

= Maximization (M-step):

= Treat the expected sufficient statistics as observed and set the
parameters to the MLE with respect to the ESS

g _Hm[x =X,Pa; =u]
X;=x|Paj=u —
,[Pa; =u] 32
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Expectation Maximization (EM)

Initial network Updated network

Expected counts

N(X)
+ E-Step N Y) M-Step
(inference) (reparameterize)
Training data
’ ¥ w
XO yl
> Y Iterate
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Expectation Maximization (EM)

» Formal Guarantees:
= L(D:0tD) > L(D:0M)
= Each iteration improves the likelihood
« If @D=@0 , then O is a stationary point of L(D:®)
= Usually, this means a local maximum

= Main cost:
= Computations of expected counts in E-Step

= Requires inference for each instance in training set
= Exactly the same as in gradient ascent!

= Reading material on EM

= Please read Andrew Ng's lecture note
34




EM — Practical Considerations

= Initial parameters
= Highly sensitive to starting parameters
= Choose randomly
= Choose by guessing from another source

= Stopping criteria
= Small change in data likelihood
= Small change in parameters

= Avoiding bad local maxima
= Multiple restarts
= Early pruning of unpromising starting points

35
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