Learning with Partially Observed Data

Lecture 12 - May 4, 2011

CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Model Selection

- So far, we focused on single model
- Given $\mathrm{D}=\{\mathbf{X}[1], \ldots, \mathbf{X}[\mathrm{M}]\}$, find best scoring model $\tilde{G}=\arg \max _{G} P(G \mid D)$
- Use it to predict next example $P(\mathbf{X}[M+1] \mid D, \tilde{G})$
- Implicit assumption
- Making predictions based on the Bayesian estimation rule:

$$
P(\mathbf{X}[M+1] \mid D)=\sum_{G} P(\mathbf{X}[M+1] \mid D, G) P(G \mid D)
$$

- Best scoring model dominates the weighted sum

$$
P(\mathbf{X}[M+1] \mid D) \approx P(\mathbf{X}[M+1] \mid D, \tilde{G})
$$

- Valid with many data instances (very large M)
- Pros:
- We get a single structure
- Allows for efficient use in our prediction tasks
. Cons:
- Committing to the independencies of a particular structure
- Other structures with similar score might be probable given D

Model Selection

- Density estimation
- Picking one structure may suffice if it distribution $P(\mathbf{X}[M+1] \mid D, G)$ is similar for different high-scoring structures.
- Structure discovery
- Several networks with similar scores \rightarrow one or several of them might be close to the "true" structure, but we cannot distinguish between them given the data D .
- Drawing a conclusion about the structure from one of the networks can be wrong
- Thus, instead of picking one of the high-scoring structures, we should focus on estimating the "confidence" of the structural properties we are interested in.
- Define features $f(G)$ (e.g., edge, sub-structure, d-sep property)
- Compute $\quad P(f \mid D)=\sum_{G} f(G) P(G \mid D)$
- Requires summing over exponentially many structures
- We can reduce the computation assuming a certain ordering

Model Averaging Given an Order

- Assumptions

$$
X_{1}, X_{2}, \cdots, X_{i-1}, X_{i}, X_{i+1}, \cdots, X_{n-1}, X_{n}
$$

- Known total order of variables α
- Maximum in-degree for variables d
- Marginal likelihood

Model Averaging Given an Order

- Posterior probability of a general feature f

$$
P(f \mid \alpha, D)=\frac{P(f, D \mid \alpha)}{P(D \mid \alpha)}=\frac{\sum_{G \in G_{0}, \alpha} f(G) P(D \mid G) P(G \mid \alpha)}{\prod_{i} \sum_{\left.\mathrm{U} \in \in \mathbb{U} \cup \backslash X X_{i} \in \alpha, \mathrm{U} \cup \backslash \alpha\right\}}^{\exp }\left\{\operatorname{FamScore}_{B}\left(X_{i} \mid U_{i}: D\right)\right\}}
$$

- f: particular choice of parents \mathbf{U} for X_{i}
$P\left(\operatorname{Pa}_{X_{i}}^{G}=\mathbf{U} \mid D, \alpha\right)=\frac{\exp \left\{\operatorname{FamScore}_{B}\left(X_{i} \mid U: D\right)\right\}}{\sum_{\mathbf{U} \in\left\{\mathbf{U}: \cup<X_{i} \in \alpha, \mathbf{U} \mid<d\right\}} \exp \left\{\operatorname{FamScore}_{B}\left(X_{i} \mid U_{i}: D\right)\right\}} \leftarrow$ All terms
- f: existence of a particular edge between $X_{j} \rightarrow X_{i}$

$$
\begin{aligned}
& \sum_{\exp }^{\exp \left\{\operatorname{FamSCore}_{B}\left(X_{i} \mid U_{i}: D\right)\right\}} \\
& P\left(X_{j} \in \operatorname{Pa}_{X_{i}}^{G} \mid D, \alpha\right) \quad=\frac{\left.\mathrm{U} \in \mathbb{U}: X_{j} \in \mathrm{U} \text { and } \mathrm{U}\left\langle X_{i} \in \alpha, \mathrm{U}\right| \mathrm{U} \backslash d\right\}}{\sum \exp \left\{\operatorname{FamScore}_{B}\left(X_{i} \mid U_{i}: D\right)\right\}}
\end{aligned}
$$

Model Averaging

- We cannot assume that order is known
- Solution: Sample from posterior distribution of P(G|D)
- If we manage to sample graphs $\mathrm{G}_{1}, . ., \mathrm{G}_{\mathrm{K}}$ from $\mathrm{P}(\mathrm{G} \mid \mathrm{D})$
- Estimate feature probability by $P(f \mid D) \approx \frac{1}{K} \sum_{i=1}^{K} f\left(G_{d}\right)$
- Sampling can be done by MCMC (Markov chain Monte Carlo)
- Next week

Notes on Learning Local Structures

- Beyond table CPDs
- Define score with local structures
- Example: in tree CPDs, score decomposes by leaves (not by X_{i} and a particular value on $\operatorname{Par} \mathrm{X}_{\mathrm{i}}$)
- Prior may need to be extended
- Example: in tree CPDs, penalty for tree structure per CPD (depth of the tree)
- Extend search operators to local structure
- Example: in tree CPDs, we need to search for tree structure
- Can be done by local encapsulated search or by defining new global operations

Structure Search: Summary

- Discrete optimization problem
- In general, NP-Hard
- Need to resort to heuristic search
- In practice, search is relatively fast (~ 100 vars in $\sim 10 \mathrm{~min}$):
- Decomposability
- Sufficient statistics
- In some cases, we can reduce the search problem to an easy optimization problem
- Example: learning trees, a fixed ordering α

Let's turn to the main topic for today...

LEARNI NG WI TH PARTI ALLY OBSERVED DATA

Training Data D

- Until now, we assumed that the training data is fully observed
- Each instance assigns values to all the variables in our domain

Incomplete Data

- In reality, this assumption might not be true.

- Missing values, Hidden variables
- Challenges
- Foundational - is the learning task well defined?
- Computational - how can we learn with missing data?

Treating Missing Data

- How should we treat missing data?
- Based on data missing mechanism
- Case I: A coin is tossed on a table, occasionally it drops and measurements are not taken (random missing)
- Sample sequence: H,T,?,?,T,?,H
- Treat missing data by ignoring it
- Case II: A coin is tossed, but only heads are reported (deliberate missing values)
- Sample sequence: H,?,?,?,H,?,H
- Treat missing data by filling it with Tails

We need to consider the data missing mechanism

Modeling Data Missing Mechanism

- Let's try to model the data missing mechanism
- $X=\left\{X_{1}, \ldots, X_{n}\right\}$ are random variables
- $\mathrm{O}_{\mathrm{X}}=\left\{\mathrm{O}_{\left.\mathrm{X}_{1}, \ldots, \mathrm{O}_{\mathrm{X}_{\mathrm{n}}}\right\}}\right\}$ are observability variables
- Always observed
- $Y=\left\{Y_{1}, \ldots, Y_{n}\right\}$ new random variables
- $\operatorname{Val}\left(\mathrm{Y}_{\mathrm{i}}\right)=\operatorname{Val}\left(\mathrm{X}_{\mathrm{i}}\right) \cup\{?\}$
- Y_{i} is a deterministic function of X_{i} and $\mathrm{O}_{\mathrm{X}_{1}}$:

$$
Y_{i}=\left\{\begin{array}{cc}
X_{i} & O_{X_{i}}=o^{1} \\
? & O_{X_{i}}=o^{0}
\end{array}\right\}
$$

Modeling Missing Data Mechanism

Case I
(random missing values)

$P(Y=H)=\theta \psi$
$P(Y=T)=(1-\theta) \psi$
$P(Y=?)=(1-\psi)$
Case II
(deliberate missing values)

MLE

$$
\begin{aligned}
& \hat{\theta}=\frac{M_{H}}{M_{H}+M_{T}} \\
& \hat{\psi}=\frac{M_{H}+M_{T}}{M_{H}+M_{T}+M_{?}}
\end{aligned}
$$

$L(D: \theta, \psi)=\theta^{M_{H}} \cdot(1-\theta)^{M_{T}} \cdot \psi^{M_{H}+M_{T}} \cdot(1-\psi)^{M_{?}}$

Modeling Missing Data Mechanism

Case I
(random missing values)

Case II
(deliberate missing values)

$$
\begin{aligned}
& P(Y=H) \quad=\theta \psi_{o_{X} \mid H} \\
& P(Y=T) \quad=(1-\theta) \psi_{o_{X} \mid T} \\
& P(Y=\text { ? }) \quad=\theta\left(1-\psi_{o_{x \mid H}}\right)+(1-\theta)\left(1-\psi_{o_{x \mid}}\right) \\
& L(D: \theta, \psi)=\theta^{M_{H}} \cdot(1-\theta)^{M_{T}} \cdot \psi_{o_{x}| |}^{M_{H}} \cdot \psi_{o_{x} \mid I}^{M_{T}} \cdot\left(\theta\left(1-\psi_{o_{x \mid H}}\right)+\left(1-\theta\left(1-\psi_{o_{x \mid I}}\right)^{M_{2}}\right.\right.
\end{aligned}
$$

Decoupling of Observation Mechanism

- When can we ignore the missing data mechanism and focus only on the likelihood?
- Missing Completely at Random (MCAR)
- For every X_{i} Ind $\left(\mathrm{X}_{\mathrm{i}} ; \mathrm{O}_{\mathrm{x}_{\mathrm{i}}}\right)$, a very strong assumption
- Sufficient but not necessary for the decomposition of the likelihood
- Missing at Random (MAR) is sufficient
- The probability that the value of X_{i} is missing is independent of its actual value, given other observed values
- In both cases, the likelihood decomposes
- When there are missing values in D, try to model such that MAR holds.

Incomplete Data

an in really, this assumption might not be true.

- Missing values, Hidden variables
a Challonges
- Foundational - is the leaming task ved definedt
- Computaonal - how con we team with miscing data?

Hidden (Latent) Variables

- Attempt to learn a model with hidden variables - In this case, MCAR always holds (variable is always missing)
- Why should we care about unobserved variables?

17 parameters

59 parameters

Hidden (Latent) Variables

- Hidden variables also appear in clustering
- Naïve Bayes model:
- Class variable is hidden
- Observed attributes are independent given the class

D
$X_{1} 310-11100298$
$x_{2} 11110072365$..
$X_{3} 00101082123$.
X_{4} 125-2301345
125-2301345...
$\mathrm{X}_{\mathrm{N}-1} 13236$.
X_{N}
074-47...

H
121133112211

How do missing data affect the likelihood function?

Likelihood for Complete Data

Input	\mathbf{x}	\mathbf{y}
Data:	x^{0}	y^{0}
x^{0}	y^{1}	
x^{1}	y^{0}	

$\boldsymbol{P}(\boldsymbol{X})$	
x^{0}	x^{1}
$\theta_{\mathrm{x} 0}$	$\theta_{\mathrm{x} 1}$

- Likelihood decomposes by variables
- Likelihood decomposes within CPDs
-Likelihood function is log-concave \rightarrow unique global maximum that has a simple analytic closed form.

Likelihood for Incomplete Data

Input
Data:

\mathbf{X}	\mathbf{Y}
$?$	y^{0}
x^{0}	y^{1}
$?$	y^{0}

$\boldsymbol{P}(\boldsymbol{X})$	
x^{0}	x^{1}
$\theta_{\mathrm{x} 0}$	$\theta_{\mathrm{x} 1}$

- Likelihood does not decompose by variables
- Likelihood does not decompose within CPDs
- Computing likelihood per instance requires inference!

Likelihood with Missing Data

- Multimodal likelihood function with incomplete data
- Likelihood function is not log-concave \rightarrow local maxima cannot be obtained by a simple analytic closed form

MLE from Incomplete Data

- Take steps proportional to the positive of the gradient.

Gradient Ascent:

- Follow gradient of likelihood w.r.t. to parameters
- Add line search and conjugate gradient methods to get fast convergence

MLE from Incomplete Data

- Nonlinear optimization problem

Expectation Maximization (EM):

- Use "current point" to construct alternative function (which is "nice")
- Guaranty: maximum of new function has better score than current point

MLE from Incomplete Data

- Nonlinear optimization problem

Gradient Ascent and EM

- Find local maxima
- Require multiple restarts to find approx. to the global maximum
- Require computations in each iteration

Gradient Ascent

- Theorem:

$$
\begin{aligned}
& \frac{\partial \log P(D \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}}= \frac{1}{\theta_{x_{i}, p a_{i}}} \sum_{m}^{m} P\left(x_{i}, p a_{i} \mid o[m], \Theta\right) \\
& \begin{aligned}
& \frac{\partial \log P(D \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}}=\sum_{m} \frac{\partial \log P(o[m] \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}} \\
& \text { each training instance data in the } \\
& \text { m-th instance }
\end{aligned} \\
&= \sum_{m} \frac{1}{P(o[m] \mid \Theta)} \frac{\partial P(o[m] \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}}
\end{aligned}
$$

- Proof: m-th instance

How do we compute ? $\frac{\partial P(o[m] \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}}$

Gradient Ascent

$$
\begin{aligned}
\frac{\partial P(o[m] \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}} & =\sum_{\mathrm{x}: \mathbf{x}<0>=0[m]} \frac{\partial P(\mathbf{X} \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}} \\
& =\sum_{\left.\mathrm{x}: \mathbf{x}<\mathbf{0}\rangle=0[m], \mathbf{x}<x_{i}, P a_{i}>=\alpha_{i}, p a_{i}\right\rangle} \frac{P(\mathbf{X} \mid \Theta)}{\theta_{x_{i}, p a_{i}}} \\
& =\frac{1}{\theta_{x_{i}, p a_{i}}} P\left(x_{i}, p a_{i}, o[m] \mid \Theta\right) \\
\frac{\partial \log P(D \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}} & =\sum_{m} \frac{\partial \log P(o[m] \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}} \\
& =\sum_{m} \frac{1}{P(o[m] \mid \Theta)} \frac{\partial P(o[m] \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}}
\end{aligned}
$$

Gradient Ascent

$$
\begin{aligned}
\frac{\partial \log P(D \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}} & =\sum_{m} \frac{1}{P(o[m] \mid \Theta)} \frac{\partial P(o[m] \mid \Theta)}{\partial \theta_{x_{i}, p a_{i}}} \\
& =\sum_{m} \frac{1}{P(o[m] \mid \Theta)} \frac{P\left(x_{i}, p a_{i}, o[m] \mid \Theta\right)}{\theta_{x_{i}, p a_{i}}} \\
& =\sum_{m} \frac{P\left(x_{i}, p a_{i} \mid o[m], \Theta\right)}{\theta_{x_{i}, p a_{i}}}
\end{aligned}
$$

- Requires computation: $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{pa} \mathrm{a}_{\mathrm{i}} \mathrm{o}[\mathrm{m}], \Theta\right)$ for all $\mathrm{X}_{\mathrm{i}}, \mathrm{m}$
- Can be done with clique-tree algorithm, since $X_{i}, \mathrm{~Pa}_{\mathrm{i}}$ are in the same clique

Gradient Ascent Summary

- Pros
- Flexible, can be extended to non table CPDs
- Cons
- Need to project gradient onto space of legal parameters
- For reasonable convergence, need to combine with advanced methods (conjugate gradient, line search)

Expectation Maximization (EM)

- Tailored algorithm for optimizing likelihood functions
- Intuition
- Parameter estimation is easy given complete data
- Computing probability of missing data is "easy" (=inference) given parameters
- Strategy
- Pick a starting point for parameters
- "Complete" the data using current parameters
- Estimate parameters relative to data completion
- Iterate
- Procedure guaranteed to improve at each iteration

Expectation Maximization (EM)

- Initialize parameters to θ^{0}
- Iterate E-step and M-step
- In the t-th iteration, we do
- Expectation (E-step):
- Let o[m] be the observed data in the m-th training instance.
- For each m and each family $X_{i j} \mathbf{P a}_{\mathbf{i}}$, compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Pa}_{\mathbf{i}} \mid 0[\mathrm{~m}], \theta^{(\mathrm{t})}\right)$
- Compute the expected sufficient statistics for each values x, \mathbf{u} on $\mathrm{X}_{\mathbf{i}} \mathbf{P a}_{\mathbf{i}}$, respectively.

$$
\bar{M}_{\theta^{(t)}}\left[X_{i}=x, \mathbf{P a}_{i}=\mathbf{u}\right]=\sum_{m} P\left(X_{i}=x, \mathbf{P a}_{i}=\mathbf{u} \mid o[m], \theta^{(t)}\right)
$$

- Maximization (M-step):
- Treat the expected sufficient statistics as observed and set the parameters to the MLE with respect to the ESS

$$
\theta_{X_{i}=x \mid \mathbf{P a}_{a_{i}}=\mathbf{u}}^{(t+1)}=\frac{\bar{M}_{\theta^{(t)}}\left[X_{i}=x, \mathbf{P} \mathbf{a}_{i}=\mathbf{u}\right]}{\bar{M}_{\theta^{(t)}}\left[\mathbf{P a}_{i}=\mathbf{u}\right]}
$$

Expectation Maximization (EM)

- Formal Guarantees:
- $\mathrm{L}\left(\mathrm{D}: \Theta^{(t+1)}\right) \geq \mathrm{L}\left(\mathrm{D}: \Theta^{(t)}\right)$
- Each iteration improves the likelihood
- If $\Theta^{(t+1)}=\Theta^{(t)}$, then $\Theta^{(t)}$ is a stationary point of $L(D: \Theta)$
- Usually, this means a local maximum
- Main cost:
- Computations of expected counts in E-Step
- Requires inference for each instance in training set - Exactly the same as in gradient ascent!
- Reading material on EM
- Please read Andrew Ng's lecture note

EM - Practical Considerations

- Initial parameters
- Highly sensitive to starting parameters
- Choose randomly
- Choose by guessing from another source
- Stopping criteria
- Small change in data likelihood
- Small change in parameters
- Avoiding bad local maxima
- Multiple restarts
- Early pruning of unpromising starting points

Acknowledgement

- These lecture notes were generated based on the slides from Prof Eran Segal.

