Readings: K&F 19.2, 19.3

EM Algorithm &
Learning Problems in
%’ |Real Applications

Lecture 13 — May 9, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Outline

Expectation Maximization (EM)

= Parameter estimation with missing data
Structural EM

= Structure learning with missing data

Learning problems in real world applications

= Computational biology, natural language processing,
robotics, collaborative filtering, etc

= Student presenters: Nathan, John, Kris

Mid-quarter review (1-1:20pm)
= Jim Borgford-Parnell, Center for Engineering Learning
and Teaching (CELT)
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MLE in Bayesian Networks

= Recall that when learning from complete data,
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—

= We would first collect sufficient statistics for each CPD.

= We can estimate parameters that maximize the likelihood
with respect to these statistics.

= For table CPDs: MILE B M[X; = x,Pa; =u]e

0 =x|Paj=u

Expectation Maximization (EM)

= Parameter estimation when D has missing data
D G Parameters @
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= Set initial set of parameters 0(1)=0,

= Iterate E-step and M-step until convergence
= In the t-th iteration,

= E-step: Given.QY, Jillin missing values
= M-step: Gjven complete data, learn paramet




E-step
= Given parameters OO, fill in missing values ;e

‘th tlaining instance G Parameters ©0
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0?20?0122 ..
2222222222222 ?
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ARNY
e Eg;ﬂgmg: For each X, P(X=x, Pa=u :?
Let@ bethe Cos-tlotm=? For each X;, P(Pa;=ujo[m])=?

data case in the i
m-th instance  dnference algorithms

<?,1,1,..,0,2,05\ (e.g. clique tree algorithm) :

E-step — expected counts

= Given parameters O, fill in missing values

D For m'th training instance G Parameters @0
11201110...
00110001..
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Let ofm] be the P(X,;=1|o[m])="? : _ _ _»
data case inthe P(Xs=1|o[m])=? For each X;, P(Xi=x, Pa;=ulo[m])=7
m-th instance P(X35=1]o[m])=7" For each X;, P(Pa;=u|o[m])="

1fPa, =Lin o[m],P(Pa)=1[o[m])

If Pa, =@)in o[m],{0 <P(Pa,=1[o[m]) <
— —“Soft” (expected) counts




E-step cont. & M-step

= Compute sufficient statistics:

= If D is complete data,
: ;gl%( = X, Pa; :u|oimiD
= Given “saft” counts (Expoctad sufficient Stafisics) ESS),

= M-step: Treat the@as those from complete data,
and set the parameters to the MLE with respect to the

ESS
Xi=xPa;=y/ — N
. Mgm[Pai :u]

Expectation Maximization (EM)

s Formal Guarantees:

z

= Each iteration improves the likelihood (read Andrew Ng’s
lecture note on EM)

« If Q=0 , then@ is a stationary point of L(D:®)
= Usually, this means a local maximum

= Main cost:
= Computations of(expected countg in E-Step
= Requires for each instance in training set

= Exactly the same as in gradient ascent! '\




EM — Practical Considerations

= Initial parameters

= Highly sensitive to starting parameters

= Choose randomly <

= Choose by guessing from another source <

i o b

» Stopping criteria o~

= Small change in data Iikelihoodf\ <t

= Small change in parameters

= Avoiding bad local maxima
= Multiple restarts “12(9‘0)

= Early pruning of unpromising starting points

Partially Observed Data: Parameter Estimation
= Log-likelihood function is not concave

4\&:&9 8.

= Methods for learning: EM and Gradient Ascent
= Exploit\nference for learning

= Challenges

= Exploration of a complex likelihood/posterior
= More missing data ~ many more |ocal maxima

= Inference <
= Main computational bottleneck for learning

= Learning large networks = exact inference is infeasible
= resort to approximate inference €
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Structure Learning w. Missing Data

= Distinguish two learning problems
= Learning structure for a given set of random variables

= Introduce new hidden variables (K&F 19.5)
= How do we recognize the need for a new variable?
=« Where do we introduce a newly added hidden variable within G?
= Open ended and less understood...
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Structure Learning w. Missing Data

= Theoretically, there is no problem
= Define score, anmhat maximizes it

R

» Likelihood ;\erm will require gradient ascent or EM
= Practically infeasible
= Typically we have,Q(n2) candidates at each search step

12




Typical Search

» Practically infeasible

= Requires or evaluating@ach candidaté) Requires EM
. ﬁ% for each.data instance of

can 3 e e
= Totg| running time per search step:

0 M_W cost-of_BNJnf_emnge)

P@dB =

Requires EM

—
N’eve/se i
. ©
M Q 13

Requires E

Structural EM
= Basic idea: use@xpected sufficient stafistios to

learn structure, not just parameters
= Use current network to complete the data using EM

= Treat the completed data as ‘real” to score candidate
structures

= Pick the candidate network with the best score
= Use the previous completed counts to evaluate

networks in next step
. , compute a new data completion
from the current network

14




Structural EM

= Set the initial parameters @1)=0,, structure
G=G,

N

s [terate:

= Given parameters/structure, fill in missing

values with estimates > D*

= Given the complete data D*, learn struc re =
AE a-b an, learn
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Structural EM Bené/f@
= Many fewer@ Vd’

= Score relative to completed data id dec
= Utilize same benefits as structure learning w. complete data
= Each candidate network requires fewer re-computations

= Here savings is large since each sufficient statistics
computation requires inference

= As in EM, we optimize a(simpler scor®

= Can show,improvements and canvergence
‘.\'v D*: Data imputed a
Q) — Scoreg, 05 ) (D29 few iterations ago




Where are we?

Week | Dates | Topics and Lecture Notes Readings
I. Probabilistic Graphical Models Representation
1 3/28 Introduction to the class s
3130 B i repres 31323
2 4/4 Local probability models 345
48 Undiraecied graphica modelis | 41,4243
3 411 Undirected graphical models Il + P-DAGs 44 45 406
Il. Exact Inference
4113 Inference: exactinference B0das
4 4/18 Exactinference in BNs 8495086
4/20 Exactinference: Cligue Trees 10.1.10.2,10.3 104
lll. Learning
5 4/25 Learning: parameter estimation T
427 Parameter learning in BNs 47
& 572 Structure learning in BNs 18
54 Partially datal with data) | 19
7 58 More on leaming (TBD)

IV. Approximate Inference

V. Special Topics & Applications

1. Probabilistic model
representation

ence in BNs

Learning
parameters/structure
- Learning CPDs,
structure from data

5. Applications y
- Decision making,
temporal procle{sses

LEARNING PROBLEMS IN
REAL APPLICATIONS




Learning Problems in Real Applications

= Robotics, Al, Natural Language Processing, Computationalj
Biology, Computer Vision...

= Robotic mapping
{. Collaborative filtering
= Part-of-speech tagging
= Presented by Nathan Imse
= Peptide identification in MSMS
= Presented by John Halloran
= Finding tumor-specific mutations
= Presented by Kris Weber
» Text classification
= Collective classification of web pages
s Computer vision
» Image segmentation and de-noising
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Background

= Robotic mapping: acquiring a spatial |
model of a robot’s environment.
(Sebastian Thrun, 2002)

= Maps are commonly used for robot
navigation (e.g. localization).

= Robots must posses é@f%ggggguap,
ar, GPS, etc) to be able to
perceive the outside world.

= All sensors are subject to errors, often
referred to as measurement noise.

Robotic Mapping

e

Howard et I. rsD mapping i
= Object maps Robots and Systeme, 2004,

. gﬂxﬂing algorithms addresses the problem of
ilding mapg composed of basic geometric shapes or objects,

such as lines, walls and so on.
= Let’s focus on one by Thrun et al. (2004) that explicitly tries to
use the probabilistic model to capture the structure in the

environment. 20




Training Data Robotic Mapping

= Data: A point cloud representation of an indoor
environment.

= The point cloud can be obtained by collecting a sequence of
point clouds, measured anng a robot’s motion trajectory.

Images from: 3D laser scann survey
http://www.applycapnor.com/products--services/3d-laser-
scanning-and-survey/
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Problem Statement Robotic Mapping

= Goal: Take the points ined over the trajectory and
fit the points using @olygong, to derive a 3D map of the
surfaces in the robot’s environment.

= However, the noise in the laser measurements, combined with
thelerrersTnTocalization, leads adjacent polygons to have
slightly different surface normals, giving rise to a_very jagged

represent f the environment. %

f Polygonal map generated from

. raw data. The display without

— - texture shows the level of noise
f'- "= involved. In particular, it illustrates

‘ ;i " the difficulty of separating the

g +. door from the nearby wall. Thrun

ﬁ" et al. (2004)

= Probabilistic model: Fit a more compact representation
of the environment to the data, reducing the noise and

providing a smoother, more realistic output.
22




MOde”ng Robotic Mapping

= The model consists of a set of 3D planesp., ..., P«
each characterized by two parameter
= a, : a unit-length vector in R3 that encodes the plane’s

surface normal vectors

.: a scalar that denotes its distance to the origin of the
global coordinate system.

Illustration of the parameters in the
planar surface model
Thrun et al. (2004)

= The distance of any point x to the plane is

800 ax—f 1€

Probabilistic Model Robotic Mapping

= Each poin belongs to one of the p@. e

Qrrespondenge variable ¥ vg( observed
. @”—A if the measurement poin@was sérer‘leré’ted by the

k-t pIan@ .
. @ is not observed (hi(igen variable) o
° I~%

[

= Define \' Ilbe i K:IEK@\)

= Allow aq additional value.C,,=0 that encdes points that are not
generateq by any of the planes

= Data: each point\x,/is a_training instance, e.g. x, =(1,1,1
24

= This assignment can be mfdeled via a set of




Learning _ Robotic Mapping

Probabilistic model
= Define P(X,|C, =k:6,) tobe «c N(d(x, p,):0,5%)

= Allow an additional value C,,=0 that encodes points that hidden
are not generated by any of the planes
= Goal: tmiﬁﬂtm@ﬂ%fwlan&s_@_
allm s), the parameters (a,, B, )that characterize
“the planes. observed

= EM algorithm (ﬂ

= E-step: computes the assignment to the correspondence variables

C..'s by assigning the weight of each point proportionately to its
alsfance to each of them.

= M-step: r f each-plare-to fit the points
assigned to it.

25

Results 1

= Notice that the map in
(b) is smoother and
appears to be visually
more accurate than the
onein (a)

Thrun et al. A Real-time EM Algorithm for
Acquiring Multi-Planar Maps of Indoor
Environments with Mobile Robots. I
IEEE Transactions on Robotics and (a) 3D map generq ap generated using
Automation, 2004. raw sensor data the EM algorithm 26




Results 11 Robotic Mapping

= Maps generated i of office environments

visually more accurate théan the one in\a)
it gl E =

Thrun et al. A Real-time EM Algorithm
for Acquiring Multi-Planar Maps of Indoo
Environments with Mobile Robots.

IEEE Transactions on Robotics and (a) Raw data map {using
Automation, 2004. high-accuracy range finder)

Learning Problems in Real Applications

= Robotics, AI, Natural Language Processing, Computational
Biology, Computer Vision...

= Robotic mapping
= Collaborative filtering
= Part-of-speech tagging <:|
= Presented by Nathan Imse
= Peptide identification in MSMS
= Presented by John Halloran
= Finding tumor-specific mutations
= Presented by Kris Weber
» Text classification
= Collective classification of web pages
s Computer vision

» Image segmentation and de-noising
28
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Hidden Markov Models for Part
of Speech Tagging

What Is Part of Speech Tagging?

Labeling words based on their function
— Nouns: person, place, thing
— Verb: action

— Adjective: describes a noun

Tagsets often ha om 10-90 tags

Adjectives

Cat, dog, ball,  Book, chase, is, Red, big, heavy,
car, zoo, cook, live, human, short,
human, book  sleep, sing cold, smelly

5/9/2011



Why Tag the Part of Speech?

* Named Entity Recognition
— Extract names of people, companies, and cities
from text
e Word Sense Disambiguation
— Differentiate between different meanings of the
same word (e.g. bank, run, book)
—
* Parsing

— Build a structure of the sentence with a much
simpler grammar (<90 tags vs. 200,000+ words)

HMM Representation:
Hidden Variables

* Hidden variables are Part of Speech (POS) tags

* Edges between POS tags are the probability of one following
the other

Hidden Variables

_\'1 .l!’r\_x \)1‘ _\'_, '_!"\;\'j"» Plxglxy ‘\ ) _\3
(s) NNP \VB _NNS

Plrixy) Plilxy) Pirixs
" rai- inte- "\
_ses rest

Pis|xy) PiFlxp)
Y Y

(s) [—‘vd { rate§
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HMM Representation:
Observed Variables

* Observed variables are words, numbers, punctuation, etc...
* Observed variables are leaves in the network
— No outgoing edges
* Edge from hidden variable to observed variable is the
probability of that observation given that hidden variable

_V . ral
'.“)‘ Fed) ses

Observed Variables

Training and Testing

e Training data consists of annotated text, either
in parse trees or in flat text

- ng_@@ Vinken/NNP ,/, 61/CD years/NNS
old/JJ,/, will/MD join/VB the/DT board/NN ....

e Testing data does not have tags
— “Fed raises interest rates”

— Tags are considered “hidden”

5/9/2011



Decoding/Inference

 Viterbi Algorithm is common
— Dynamic programming

— Optimal global sequence, with probability

* Implemented for a course last fall

— Trained on ~1900 sentences from the Wall Street

g | g
88% accuracy States 47 2162
(Wlth smoothin Observations ~7900 ~7900
Transitions ~890 ~99500
Emissions ~8700 ~400800

Credit

The diagram of the HMM network as a Bayesian Network on
slides 4 & 5 are the work of Andrew McCallum from Umass,

Amherst

5/9/2011



R
A Dynamic Bayesian Network for
Peptide Identification in MSMS

John Halloran
CSE 515, Spring 2011
5/9/2011

Problem Statement

e Tandem mass spectrometry

— Spectrum of measured m/z intensities generated
from sample proteins (peptides)

e Given MSMS spectrum, identify peptide
which generated spectra

e Typically look up peptides in database of the
mapped organism

5/9/2011



Model

Normalize spectra, quantize into B bins
Fragment lons

Model fragmentation event: IEQFM* —

— Candidate Peptide: IEQFMEEMYQDK**

Check n=mass(IEQFM*), c=mass(EEMYQDK") bins values,
calculate Gaussian likelihood ratio based on values

/

n C

EEMYQDK*—

*n, ¢, Bin[i] values are observed

*Loss of CO, NH;, H,0O(?) - Losses are hidden variables
(Bernoulli)

*Peptide length N, N-1 such events: concatenate to form DBN

5/9/2011



Training

e Learned parameters:

— Gaussian variances, neutral loss probabilities
* Training Data:

— 1208 high quality E-coli matches

— Matches generated combining 7 peptide-
identification algorithms

e Parameters trained using EM

Inference

* Candidate peptide C and B bins assigned score
of log(P(bins,C)) , where:

- _ n-1 B pA(bn) pA(bc)
el Z el R ) by

Likelihood ratios

5/9/2011



e Testing performed using decoy database:

Results

— Permute target database values

— Good algorithm should score targets high, decoys

low

— Performance metric: false discovery rates (FDR)

w
[=]
o
o

N
w
o
o

=

w

o

(=]
T

Number of target matches
N
(=]
S
o

1000

500 |

Results

— DBN
— Crux

— Mascot4

—

(?.00

0.02 0.04

g-value: think FDR

0.06
qg-value

0.08

0.10

State of the
Art programs

5/9/2011
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Questions?

* Model implemented using GMTK (Graphical
Models Toolkit) developed by Dr. Jeff Bilmes




Cancer Genomics Problem:
Finding tumor-specific mutations

Problem Statement:

Given:
— a human cancer patient
— sample from tumor tissue
— sample from normal tissue
— DNA sequence of both samples

Identify the mutations present in the tumor
tissue that are not present in the normal tissue

Background: DNA, Genotypes, Mutations

TAACGCGGTCCCG... °Atthe simplestlevel, we can
think of DNA as a sequence of

letters from the alphabet,
{A,C,G,T}

TAAAGCGG + Humans have 2 copies of

T GCGG CG... e€ach chromosome.

Genotype AA Genotype CT * 10 poss_it_)le “genotypes” at
each position

GCGG ==« We are trying to find single
GCGGT[TCCG... base mutations in the tumor

DNA

Genotype AT Genotype CT

5/9/2011



Problem: Call Genotypes from Data

¢ Our data: lots of overlapping short reads.
* At each position, we count the number of reads for each base...

Readl1 ATGGTGEGGAACCACCCACETICCTTTGCG

Read 2 GIGIFAACCACCCACOCCCTTTGCGCG
Read3 ATGGTGEEAACCACCCACCCEC
Read 4 TGGIGAACCACCCACATICCTTTGCG

rReads5 ATGGTGEEAACCACCCACOTEC
Read 6 GGTGIEHAACCACCCACCCCTTTGCGEG

6G = GG 3C,3T= CT
i

* But the data is noisy: 1C,9G = CG? o GG?

Basic PGM - Just Calls Normal GT

— —
<S_§mpled Allele 10_(_3>

<5amp|edAlleIe9 e o o

Error? 3

JENNN S——

¢ o e “Read Qual 100
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VA
Sampled Allele 1 ’

Local Probability Models

rd

Local Probability Models

‘ Read Allele 1

5/9/2011



Inference:
Find most likely normal genotype

100
P(G,71,...,7100,G1,- -, @100) = P(G) [] D P(a:)P(Eilg:)P(Si|G)P(r:lS;, E:)

P
p——

Return arg max, P(G,71,..., T100, 415« « -, §100)

Complete BN

5/9/2011
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Example Results

A list of possible somatic mutations, ranked by probability:

Chrom | Position Normal Mutated Probability
Genotype | Genotype
9 53,246,683 AA AT %
3 4,327,802 CT TT .9992
1 10,234,906 GG AG .9934
9 52,132,888 GG CG .9897




