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MLE in Bayesian Networks

= Recall that when learning from complete data,
D G Parameters

X;1011111001110...
X, 101100110001 ..
X3 |001010110011..
X, 1101010111100...
010100110111 ..

010000000100...
X3 011010100011 ...
X5, 010010011011 ...

= We would first collect sufficient statistics for each CPD.
= We can estimate parameters that maximize the likelihood
with respect to these statistics.

= For table CPDs: MILE M [X; =x,Pa; =u]

X;=x|Paj=u — M [Pai _ U] 3




Expectation Maximization (EM)

= Parameter estimation when D has missing data
D G Parameters @

X; 101?2111201110...
X, 121100110001 ...
X3 |001?210112011...
X, 1101020111107 ...
01?210??2?20111..

0100020201272 ..
X6 22222222222222222°?

X371010?212011211 ...

= Set initial set of parameters 0(1)=0,
= Iterate E-step and M-step until convergence
= In the t-th iteration,
= E-step: Given OO, fill in missing values
= M-step: Given complete data, learn parameters O(t+1)

E-step

= Given parameters O, fill in missing values

D For m'th training instance G Parameters @0

11201110...
00110001..
10112011 ..
201111072 ..
0??2?20111..

0?20?0122 ...
2222222222222 ?

12011211 ..

P(X,=1 =?
PEX;=1I2%$B=? For each Xis P(Xi=X, Pai=u|o[m])=?

P(Xs:=1|o[m])=? For each X, P(Pa,=u|o[m])=?
Let o[m] be the (X3s=1[o[m]) r each X, P(Pa;=u|o[m])

data case in the i
m-th instance  dnference algorithms

<?,1,1,...,0,2,0> (e.g. clique tree algorithm)




E-step — expected counts

= Given parameters O, fill in missing values
D For m'th training instance G Parameters ©0

X; |02 11201110...
X, [12]1100110001 ...
X; |0011P10112011...
X, |1011p?201111072 ...
Xs (01?211 02220111...

X;s [0Jjop0?20201272...
Xis [222P2222222222222°?

X3 |0j0P12011211 ...

Let ofm] be the P(X,;=1|o[m])="? : _ _ _»
data case inthe P(Xs=1|o[m])=? For each X;, P(Xi=x, Pa;=ulo[m])=7

m-th instance P(X35=1|o[m])="? For each X;, P(Pa;=u|o[m])="
If Pa, =1 in o[m], P(Pa, =1|o[m]) = 1 and P(Pa; =0|o[m]) = (i

If Pa; =? ino[m], 0 <P(Pa;=1|o[m]) < 1
"Soft” (expected) counts

E-step cont. & M-step

= Compute sufficient statistics:

= If D is complete data,
M[X; =x,Pa; =u] =Y 1(X, = x,Pa; =u|o[m])

= Given “soft” counts (expected sufficient statistics; ESS),
I\ng[Xi =X,Pa; =u]= z P(X, =x,Pa, =u|o[m],8")
M, [Pa, =ul =3 P(Pa, =u]ofm],o)

= M-step: Treat the ESS as those from complete data,
agg set the parameters to the MLE with respect to the
E

0(t+1) _ I\WH(I) [XI =X, Pai = u]
Xi=x|Pa;=u — — —
Mgm[Pai =u]




Expectation Maximization (EM)

s Formal Guarantees:
« L(D:0®D) > L(D:0M)

= Each iteration improves the likelihood (read Andrew Ng’s
lecture note on EM)

« If @D=@0 , then OO is a stationary point of L(D:®)
= Usually, this means a local maximum

= Main cost:
= Computations of expected counts in E-Step

= Requires inference for each instance in training set
= Exactly the same as in gradient ascent!

EM — Practical Considerations

= Initial parameters
= Highly sensitive to starting parameters ©,
= Choose randomly
= Choose by guessing from another source

= Stopping criteria
= Small change in data likelihood
= Small change in parameters

= Avoiding bad local maxima
= Multiple restarts
= Early pruning of unpromising starting points




Partially Observed Data: Parameter Estimation
= Log-likelihood function is not concave

= Methods for learning: EM and Gradient Ascent
= Exploit inference for learning

= Challenges

= Exploration of a complex likelihood/posterior

= More missing data = many more local maxima

= Cannot represent posterior = must resort to approximations
= Inference

= Main computational bottleneck for learning

= Learning large networks = exact inference is infeasible
= resort to approximate inference

10

Structure Learning w. Missing Data

= Distinguish two learning problems
= Learning structure for a given set of random variables

= Introduce new hidden variables (K&F 19.5)
= How do we recognize the need for a new variable?
=« Where do we introduce a newly added hidden variable within G?
= Open ended and less understood...

11




Structure Learning w. Missing Data

= Theoretically, there is no problem
= Define score, and search for structure that maximizes it

'092M DIM(G)

Score,,(G:D) = I(6?AG :D)-

» Likelihood term will require gradient ascent or EM

= Practically infeasible
= Typically we have O(n2) candidates at each search step

12

Typical Search

» Practically infeasible -
= Requires EM for evaluating each candidate Requires EM

= Requires inference for each data instance of
each candidate e e

= Total running time per search step:
O(nZ- M- #EM iteration - cost of BN mference)

Requires EM
\é@ '?el's,.se
Requires EM Q 3




Structural EM

= Basic idea: use expected sufficient statistics to
learn structure, not just parameters
= Use current network to complete the data using EM

= Treat the completed data as “real” to score candidate
structures

= Pick the candidate network with the best score

= Use the previous completed counts to evaluate
networks in the next step

= After several steps, compute a new data completion
from the current network

14

Structural EM

= Set the initial parameters ©(M=0,, structure
G=G,

s [terate:

= Given parameters/structure ©® and GO, fill in missing
values with estimates > D*

= Given the complete data D*, learn structure G(t+1)

= Given the complete data D* and structure G(t+1), learn
parameters O(t+1)

15




Structural EM Benefits

Many fewer EM runs

Score relative to completed data is decomposable!
= Utilize same benefits as structure learning w. complete data
= Each candidate network requires fewer re-computations
= Here savings is large since each sufficient statistics
computation requires inference
As in EM, we optimize a simpler score

Can show improvements and convergence

D*: Data imputed a
Scoregc (G, 0 ) D) — Scorey, ((G2,62):D)  few iterations ago

> E,[Scoreg (G, 6, ): D) |-, [8coreB,C(<GQ,9§> DY)

= An SEM step that improves in D* space, improves real score

16

LEARNING PROBLEMS IN
REAL APPLICATIONS

CSE 515 — Statistical Methods — Spring 2011 17




Learning Problems in Real Applications

= Robotics, AI, Natural Language Processing,
Computational Biology, Computer Vision...

= Robotic mapping
= Collaborative filtering
= Part-of-speech tagging
= Presented by Nathan Imse
= Peptide identification in MSMS
= Presented by John Halloran
= Finding tumor-specific mutations
= Presented by Kris Weber
m Text classification
» Collective classification of web pages
= Computer vision
» Image segmentation and de-noising

18

Problem Statement

= Robotic mapping: acquiring a spatial &
model of a robot’s environment.
(Sebastian Thrun, 2002)

= Maps are commonly used for robot
navigation (e.g. localization).

= Robots must posses sensors (sonar,
laser, radar, GPS, etc) to be able to
perceive the outside world.

= All sensors are subject to errors, often
referred to as measurement noise.

Robotic Mapping
W 5

Howard et I. Towrds 3Dm
large urban environments, Intelligent

u Ob]eCt ma pS Robots and Systems, 2004.

= A family mapping algorithms addresses the problem of
building maps composed of basic geometric shapes or objects,
such as lines, walls and so on.

= Let’s focus on one by Thrun et al. (2004) that explicitly tries to
use the probabilistic model to capture the structure in the
environment. 19




Training Data Robotic Mapping

= Data: A point cloud representation of an indoor
environment.

= The point cloud can be obtained by collecting a sequence of
point clouds, measured along a robot’s motion trajectory.

Images from: 3D laser scann survey

http://www.applycapnor.com/products--services/3d-laser-
scanning-and-survey/

20

Goals Robotic Mapping

= Goal: Take the points obtained over the trajectory and

fit the points using polygons, to derive a 3D map of the
surfaces in the robot’s environment.

= However, the noise in the laser measurements, combined with
the errors in localization, leads adjacent polygons to have
slightly different surface normals, giving rise to a very jagged
representatlon of the environment.

! Polygonal map generated from

. raw data. The display without

- texture shows the level of noise

: S50 involved. In particular, it illustrates
1";1 - the difficulty of separating the

4" door from the nearby wall. Thrun
a{,_ﬁr et al. (2004)

= Probabilistic model: Fit a more compact representation
of the environment to the data, reducing the noise and
providing a smoother, more realistic output.

21




MOde”ng Robotic Mapping

= The model consists of a set of 3D planes p;, ..., Py
each characterized by two parameters (a,, B,)
= a, : a unit-length vector in R3 that encodes the plane’s
surface normal vectors

= B, : a scalar that denotes its distance to the origin of the
global coordinate system.

offset - ¢ 1,

= The distance of any point x to the plane is
d(x, p) =l X - B | ”

Illustration of the parameters in the
planar surface model
Thrun et al. (2004)

Probabilistic Model Robotic Mapping

= Each point x, belongs to one of the planes p;,...,pk- hidden

= This assignment can be modeled via a set of
correspondence variables C,
» C.,=k if the measurement point x,,, was generated by the
k-th plane p,.
= C,, is not observed (hidden variable)

observed

= Define P(X,|C, =k:6,)xN((x,p,):0,0°)
= Allow an additional value C,=0 that encodes points that
are not generated by any of the planes




Learning Robotic Mapping
= Define P(X,, =x|C,, =k:6,)oc N(d(X, p,) :0’02)

= Allow an additional value C,,=0 that encodes points that hidden
are not generated by any of the planes
= Goal: the assignment of points to planes (C,, for
all m’s), the parameters (a,, B,) that characterize
the planes. observed

= EM algorithm
= E-step: computes the assignment to the correspondence variables
C.'s by assigning the weight of each point proportionately to its
distance to each of them.
= M-step: recomputes the parameters of each plane to fit the points
assigned to it.

Results 1

= Notice that the map in
(b) is smoother and
appears to be visually
more accurate than the
onein (a)

Thrun et al. A Real-time EM Algorithm for
Acquiring Multi-Planar Maps of Indoor

Environments with Mobile Robots. . >
1EEE Transactions on Robotics and (@) 3D map generated from (b) 3D map generated using

Automation, 2004. raw sensor data the EM algorithm 25




Results 11 Robotic Mapping

= Maps generated in real-time, of office environments

= Notice that the map in (b) is smoother and appears to be
visually more accurate than the one in (a)

Thrun et al. A Real-time EM Algorithm
for Acquiring Multi-Planar Maps of Indoor
Environments with Mobile Robots. -
IEEE Transactions on Robotics and (a) Raw data map (using a (b) Planes, extracted from
Automation, 2004. high-accuracy range finder) the map using EM 26

Pr0b|em Statement Collaborative Filtering

= In many marketing settings, we want to provide to a user a
recommendation of an item that he might like, based on
previous items that he has bought or liked...

= Collaborative filtering: Use the observed preferences of
other users to try and determine the preferences for any
other user.

= Learn the dependenc?/ structure between different purchases, as
observed in the population.

= For example, applying a structure learning algorithm can result in:

Each variable denotes
whether the TV

program was watched.
A fragment of a BN learned from

Nielsen TV rating data, capturing
the viewing record of sample

Law & Order

NBC Monday
Night Movies

viewers. (Heckerman et al.) 27

13



PrObabi”StiC MOdel Collaborative Filtering

= A different application of BN learning to the collaborative
filtering data task utilized a Bayesian clustering approach.

= Cluster variable C denotes
subpopulations of customers.
= Cis not observed (hidden variable)

= Variable X; indicates whether the
user purchased item /.

= Item i that the user did not purchase is
assigned X;=x_.

= The individual purchases X; of each user are taken to be
conditionally independent given the user’s cluster
assignment C.

= Training Data
= Each user is a training instance
= For each user, we have values on purchase variables X;'s, not 0”2%-

Results I Collaborative Filtering

= Learning: EM algorithm
= E-step: Fill in the missing values on C
= M-step: Learn parameters in P(X,|C),...,P(X,|C)

= Experiment
= Applied to a data set of people browsing the MSNBC website.
= Each article is associated with a binary rv X; which takes the value
xt if the user followed the link to the article.
= Results

= Four largest clusters found by Bayesian clustering applied to
MSNBC news browsing data. For each cluster, the table below
shows the three news articles whose probability of being browsed

is highest.
Cluster 1 (36 percent) Cluster 2 (29 percent)
E-mail delivery isn’t exactly gnaranteed 757 Crashes At Sea
Should you buy a DVD player? Isracl, Palestinians Agree To Direct Talks
Price low, demand high for Nintendo Fulrman Pleads Innocent To Perjury
Cluster 3 (19 percent) Cluster 4 (12 percent)
Umnps refusing to work is the right thing The truth about what things cost
Cowboys are reborn in win over eagles Fulhrman Pleads Innocent To Perjury

Did Orioles spend money wiselv? Real Astrologyv 29




Hidden Markov Models for Part
of Speech Tagging

What Is Part of Speech Tagging?

Labeling words based on their function
— Nouns: person, place, thing
— Verb: action
— Adjective: describes a noun

Tagsets often have anywhere from 10-90 tags

Cat, dog, ball, Book, chase, is, Red, big, heavy,
car, zoo, cook, live, human, short,
human, book  sleep, sing cold, smelly

5/8/2011



Why Tag the Part of Speech?

* Named Entity Recognition
— Extract names of people, companies, and cities
from text
e Word Sense Disambiguation
— Differentiate between different meanings of the
same word (e.g. bank, run, book)
* Parsing

— Build a structure of the sentence with a much
simpler grammar (<90 tags vs. 200,000+ words)

HMM Representation:
Hidden Variables

* Hidden variables are Part of Speech (POS) tags

* Edges between POS tags are the probability of one following
the other

Hidden Variables

X1 Wixzlxy ‘. X2 ’ _F’-‘\; X2) ’ X3 \Plxgq \);‘I Xg \Pixg \; X5
(s) NNP _VBZ _NN _NNS

> ¥ Plilxg) .

P(s|xy) P(Flx») Pirix3) 4 Pirixs
i Y
Y Y y _ Y
rai- inte-

s Fed |rates
ls) red _ses rest ‘

5/8/2011



HMM Representation:
Observed Variables

* Observed variables are words, numbers, punctuation, etc...
* Observed variables are leaves in the network
— No outgoing edges
* Edge from hidden variable to observed variable is the
probability of that observation given that hidden variable

X O \Pelx )Xo Wi 2) " X3 \Ply g/ Xa \Psig)/ X5
(s) _NNP \ vBZ / _NN NNS
P(s|xy) P(Flx») u””"‘i‘ VP”"-I" ![’H' Xs5)
Y \ . _—
7N e rai- inte- X
({s)) Fed) ( | | \rates |
g ses rest o
Observed Variables -

Training and Testing

e Training data consists of annotated text, either
in parse trees or in flat text

— Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS
old/JJ,/, will/MD join/VB the/DT board/NN ....

e Testing data does not have tags
— “Fed raises interest rates”
— Tags are considered “hidden”

5/8/2011



Decoding/Inference

 Viterbi Algorithm is common

— Dynamic programming

— Optimal global sequence, with probability
* Implemented for a course last fall

— Trained on ~1900 sentences from the Wall Street

Journal g | rigram |
— 88% accu racy States 47 2162
(Wlth smoothing) Observations ~7900 ~7900
Transitions ~890 ~99500

Emissions ~8700 ~400800

Credit

The diagram of the HMM network as a Bayesian Network on
slides 4 & 5 are the work of Andrew McCallum from Umass,
Ambherst

5/8/2011



R
A Dynamic Bayesian Network for
Peptide Identification in MSMS

John Halloran
CSE 515, Spring 2011
5/9/2011

Problem Statement

e Tandem mass spectrometry

— Spectrum of measured m/z intensities generated
from sample proteins (peptides)

e Given MSMS spectrum, identify peptide
which generated spectra

e Typically look up peptides in database of the
mapped organism

5/8/2011



Model

Normalize spectra, quantize into B bins
Fragment lons

IEQFM*
_ Candidate Peptide: IEQFMEEMYQDK++<
EEMYQDK*

Model fragmentation event:

Check n=mass(IEQFM*), c=mass(EEMYQDK") bins values,
calculate Gaussian likelihood ratio based on values

/

n C

*n, ¢, Bin[i] values are observed

*Loss of CO, NH;, H,0O(?) - Losses are hidden variables
(Bernoulli)

*Peptide length N, N-1 such events: concatenate to form DBN

5/8/2011



Training

e Learned parameters:

— Gaussian variances, neutral loss probabilities
* Training Data:

— 1208 high quality E-coli matches

— Matches generated combining 7 peptide-
identification algorithms

e Parameters trained using EM

Inference

* Candidate peptide C and B bins assigned score
of log(P(bins,C)) , where:

- ~ n—1 B pA(bn) pA(bC)
P(bms,C)—lT[%sp('OSS)H p'(b")\ p, (b)) pi(b,) }

Likelihood ratios

5/8/2011



e Testing performed using decoy database:

Results

— Permute target database values

— Good algorithm should score targets high, decoys

low

— Performance metric: false discovery rates (FDR)
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Results

— DBN
— Crux

— Mascot4

—

(?.00 O.E)Z 0.(|)4

g-value: think FDR

0.06
qg-value

0.08

State of the
Art programs

0.10
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Cancer Genomics Problem:
Finding tumor-specific mutations

Problem Statement:

Given:
— a human cancer patient
— sample from tumor tissue
— sample from normal tissue
— DNA sequence of both samples

Identify the mutations present in the tumor
tissue that are not present in the normal tissue

Background: DNA, Genotypes, Mutations

TAACGCGGTCCCG... °Atthe simplestlevel, we can
think of DNA as a sequence of

letters from the alphabet,
{A,C,G,T}

TAAAGCGG + Humans have 2 copies of

T GCGG CG... e€ach chromosome.

Genotype AA Genotype CT * 10 poss_it_)le “genotypes” at
each position

GCGG ==« We are trying to find single
GCGGT[TCCG... base mutations in the tumor

DNA

Genotype AT Genotype CT

5/8/2011



Problem: Call Genotypes from Data

¢ Our data: lots of overlapping short reads.
* At each position, we count the number of reads for each base...

Read 1

Read 2

Read 3

Read 4

Read 5

Read 6

ATGGTJEG
G

ATGGTG{(
TG

ATGGTGH(
GGTG

6G = GG

GAACCACCCAC(
SAACCACCCAC(
EAACCACCCACG
SAACCACCCACA
EAACCACCCACG

CTTTGCG

CTTTGCGCG
CLEC
TCCTTTGCG
TCC

SAACCACCCACQ

3C,3T= CT

CCCTTTGCGCG

* But the data is noisy:

1C,9G =

CG? or GG?

Basic PGM - Just Calls Normal GT

Normal GT

C_Sampled Allele 1> <§ampled Allelez/\J o o

° <§mpled Allele 1‘00>

5/8/2011



Local Probability Models

VA
Sampled Allele 1 ’

Local Probability Models

‘ Read Allele 1

5/8/2011



Inference:
Find most likely normal genotype

100

P(G,71,...,7100,G1,- -, @100) = P(G) [] D P(a:)P(Eilg:)P(Si|G)P(r:lS;, E:)
=1 S;,E;

Return arg max, P(G,71,..., 7100, 1 - - - 1 §100)

Complete BN

v @é @ TR @ @ o @
@) @ - (Gro) ¥ 3
I A A
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