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Inference

= Inference is widely used,
= Probabilistic queries: Given E=e, what is)?
= For example, given E=image what is P(X=labels|E=image)=?

Image from the website of Prof Daphne Koller’s lab
L ! (http://dags.stanford.edu/projects/scenedataset.html)

Image from the website of Prof Daphne Koller’s Tab----. §
(http://dags.stanford.edu/projects/scenedataset. NME,) T (Exwr) T (Ea) T

grid-structured
Markov network

= Learning parameters with partially observed data
= EM, gradient ascent, etc

= but exact inference is expensive ¢
= O( ,where®=maxi|Val@)|

= Exponential blowup can be in N; which for factor i can b@
if factor i has m variables with v values each. ;




Approximate Inference Overview

Particle-based approximate inference

= Full particle methods
= Sampling methods Today...
= Deterministic particle generation

= Distributional particles
= Applications & Simulation: data association

Global approximate inference

= Inference as optimization

= Generalized Belief Propagation

= Propagation with approximate messages

= Structured variational approximations 4

Particle-based Approximate Inference

General framework

= Generate particles (samples) x[1],...
= Estimate functior@ by E_(f

X[M] from P

= For a function f(X)= }\@W)’
= P(Y=y) can be written as Ep[f]

2£ -
= How particles are generated?
= Use forward sampling <«
= Use likelihood weighting sampling <
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Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling, Likelihood weighting

E> = (Un-normalized/normalized) Importance sampling
= Matkqyu chain-Monte Carlo
= Deterministic particle generation

= Distributional particles

Unnormalized Importance Sampling

= For any distribution Q(X), since: M%
CEHEE

= We can estimate f(x) by generating samples from
Q nd estimating' g

( f %?%I |? distribution
\’\'\/«@ Zml ([ ])Q([ ]) Pro osaI

= Can show that estimator variance decreases with more
samples@ M>00

= Can show that Q=P is the lowest variance estimator
iy




Normalized Importance Sampling

= Un-normalized importance sampling assumes knowr{ P
. UsuaIIy we know P up to a consta f!o o) where

S
QX V(MLQ,L)
;,”f@ f(X)P'(x /Q(x)]

Q(X)[f (X)BHX) 1Q(0)]
Eooo[P/(X)/Q(X)]

Normalized Importance Sampling

~ EquolF(X)P'(x)/Q(x)]

Epo [ (X)] =
ool OO =~ a0

= Given M_samples fron@ normalized sampling
estimates function f by:

.kz | (qm])P (x[m])/@(x[ )

R%Z P'(x[m])/QUm])




Importance Sampling for BayesNets
. Ilse\t(’s thi&k;%ozut hpocvgftlate particles to estimate

= Define m%’/ated networ as:
= Nodes have no parents T Gg_,
= Nodeg X<E have CPD that is 1 for X=E[X] an therwise
= The parents and CPDs for all other variabtés are unchanged
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P B g2 099 0.01 e
Proposal distribution Q(X,e)=§l\>GE= (X,e) 10

It

Likelihood Weighting as IS

Target distribution ®'(X
Proposal distribution Q(X,e =PGE=e(X,e)

Claim: Likelihood weighting is precisely normalized
importance sampling with the above distributions

Proof sketch: 2:1

« LW estimate: P(y|e)~ . £

= IS estimate: p(y|e)= Zmzlplmm(x[m {X[m](Y) =y}

T > @(x[m])/ QUM
= But @in LW precisely comes out to m

= _Since

@m@i»ﬂp(xiwﬁxi»
== = =[P |Pa(e)) =
Q(x[m]) D) [1Pee Pate) =piml

X ¢E 11




Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling
= Importance sampling
E> = Markov chain Monte Carlo (MCMC)

= Deterministic particle generation

= Distributional particles

12

Markov Chain Monte Carlo

= Limitations of importance sampling

= An evidence node affects the sampling only for nodes that are
its descendants. £,

= The effect on nodes that are non-descendants is accounted

for only by the weights w's.
= What if much of the evidence is at the leaves of the network?
= We are essentially sampling from the -M which

is often very far from the desired posteriof P(X|E=¢)
= — Decreases the accuracy of the estimates

= An alternative sampling approach ¢MMMC)

= General idea: Define a sampling process that is guaranteed to

convergmsamples from the posterior distribution of
interest

= Generate samples from the sampling process
» Estimate f(X) from the samples

13




Markov Chains

= A Markov chain sists of
= A state space@

= Transition probability T(x>x") of going from @

= Distribution over subsequent states is defined as

| Distribution over the “next” state | | Distribution over the “current” state |

M: ZXGVal(x)\AP.(tﬂ),\(.Xﬁ(t,.,\.) — X.,)w
i, G L 0.25
P =)
= P08
Ay th o)) 0 0.75
+PAA 0.8

0.7

Simple Markov chain
14

Stationary Distribution

| Distribution over the “next” state | | Distribution over the “current” state |

P(”l)(X (t+) _ X') = erval(x) P(t)(X ® _ X)T (X — x')

\N~errr~——
= A distvrimis a stationary distribution for
a Markov chain T if it satisfies

\[\_, (X =x")= xeVal(x)zr(x =X)T(x > X')

7(x*) =0.77(x*)+0.57(x%)

z(x) =0.257(x')+0.57(x°%)
?ﬁ(XB) =0.757(x") +0.37(x*) 0.25

7(x*) =05
z(x}) =03

2(x') =0.2 } 03

Simple Markov chain
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Markov Chains & Stationary Dist.
= A Markov chain is regular if there is k such that for
every X, x'eVal e probability of getting from x
to x" in exactl @ is greater than zero
= A/

= Theorem: A finite state Markov chain T has a
unique stationary distribution if and only if it is
regular

= Goal: Define v chain whose stationary
distribution i

16

Gibbs Sampling <
= States Ee
= Legal (=consistent with evidence) assignments to

variables

= Transition probablllty
s T=T,.. 1
.@)r each varlable X;, Iet@be X-{X}. w
- TE® - () =D
ag S Ve
= Claim: is a stationary distribution to the
chain

17




A couple slides ago...
I I = A Markov chain iir there is k such that f
G I bbs Sa m pl I ng every x, x'eVal(X), the probability of getting fro@
t& x! in exactly k steps is greater than zero

> as 4 stationary distribution
= Gibbs-sampling Markov chain is regular if: “X

= Bayesian networks:(all CPDs are strictly positiv
= Markov networks: all clique potentials are strictly positive

= Save
= Return(x[m i,>

. Note:@ is easily computed from Markov blanket

18

Gibbs Sampling
= How do we evaluate?

| | Agaln, |et X'i = {Xll'"’Xi-1’Xi+ll"'IXn}
W\

= The last term uses only the factors involving X.

19




Gibbs Sampling in Practice
= We need to wait until the burn-in time has ended -
number of steps until W}tak&samplﬁ%m the chain
= We want to wait until the sampling distribution is close to the
;E(ﬂa}
= Hard to provide bounds in general for this_pixing time”

= Once the bdurn-itr)\ time ended, all samples are from the
stationary distribution
’ X KOO

= Note: after the burn-in time, samples are correlated.
Consecutive samples from the same trajectory are
correlated.

= Since no theoretical guarantees exis;f application of
Markov chains is somewhat of an art

= We can -in time by comparing the estimates
Ek(f)zﬁzlef(xk[m],e) from multiple chains. 1,...

20

Sampling Strategy

= How do we collect the samples?

= Strategy I:
= Run the chain M times, each run foé N steps)

= Each run starts from a different state
= Return the last state in each run

suteyd |y

= Strategy II:
= Run one chain for a long time
= After some “burn in” period, sample points every some

fixed number of steps
°=—0—0—0—0—0—0—0

A\Y H" /4 v -
burn in” " M samples from one chain
21




Comparing Strategies
Strategy I: ‘& 1

= Better chance of “covering” the space of P
points, especially if the chain is slow to reach | ——@ | %
the stationary distribution :.‘[ =

= Have to perform “burn in” steps for —-

\/\"\/\A

Strategy II:
= Perform “burn in” only once
= Samples might be @(althoughmﬂ&eﬂdﬁ

oo o oo oo
“burn in” | (M samples from one chain>

Hybrid strategy:
= Run several chains, and sampl from eaci?
22

= Combines benefits of both strategies

— >

Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling
= Importance sampling
= Markov chain Monte Carlo

|:> = Deterministic particle generation <—

= Distributional particles

23




Deterministic Search Methods

= Idea: if the distribution is dominated by a small set of
instances, it suffices to consider only them fop—
approximating the functionqﬁ —
= For instances that we generat

(E(DXY"

< N5 —_—a

Sum of probabilities
that f is 0.

= Key: how can we enumerate highly probably
instantiations? ¢—

= Note: the single most probably instantiation i which itself
is an NP-hard problem

24

Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling
= Importance sampling
= Markov chain Monte Carlo

= Deterministic particle generation

== Distributional particles

= Until now, we discussed the cases where we are given
particles that have full assignment of values on all
variables.

= Can we use a partial assignment to estimateg?

25




Distributional Particles

= Idea: us to a subset of the

network variables, combined with closed form

representation of a distribution over the rest

. @ — Variables whose assignments are defined by particles
Q‘ﬁ — Variables over which we maintain a distribution

= Distributional particles are a.k.a W particles

= Estimation proceeds as

= We assume that we can compute the internal exectation efficiently

26

Distributional Particles

= Distributional particles define a continuum between
= For l&@l we have full particles and thus full
samp

= For |Xp|=

0 we are performing full exact inference
)

= Distributional Likelihood Weighting <
= Sample over a subset of the variables

P(yle)~ L) EP(Xq;;““],@[l{X[m](y) =y}
2y W]

= Distributional Gibbs Sampllng)( &

= Sample only a subset of the varlables tran5|t
probability is as before T((u;, X)) = (u, X)) %
but the computation may require inference f

27




Broader Class of Markov Chains

= Limitations of Gibbs sampling

= The Gibbs chain uses only very local moves over the
state space: moves that chance only gpe variable at a

time. XT3 xzmd

. will form strong basins of

attraction, and the chain will be very unlikely to move

away from such a state - _the chain will mi lowly.

= We want to consider chains that allow a broader range of
moves, including much larger steps in the space.

= Solutions
= Block Gibbs sampling <
= Metropolis-Hastings algorithm <

28

Block Gibbs Sampling

= There are cases where we can simultaneously j
sample several variables efficiently

= Block Gibbs algorithm

= Assume that we can partition the
several disjoint blocks of variabl
we efficiently sample@)from P .

= Simple modification to Gibbs: Iteratlvely sample blocks
of variables, rather than individual variables

= It takes much “longer-range” transitions in the state
space in a single sample step
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Metropolis-Hastings algorithm (1/3)

= Unlike the Gibbs chain, M-H algorithm does not
assume that we can generate next state samples
from a particular targe

= It uses the idea of a(proposal distribution Q
already seen in the case of IS.

bhat we have

= Basic ideas
« We sample from a different distribution@ and then correct
for the resulting error.
= However, unlike importance sampling, we do not want to
keep track of importance weights.

= They are going to decay exponentially with the number of
transitions, leading to a whole slew of problems

= Instead, we randomly choose whether to accept the

proposed ‘tra_Qgi\ti}n\, @H a probability that corre:‘@or the
n

discrepancy between\Q/ and the target distributio 30

Metropolis-Hastings algorithm (2/3)
= Let our@:oposat—dﬁtﬁbut@ define a transition

model over our state space

» For each stat @- efines a distribution over possible
successor states in @X), from which we select randomly a

candidate next state

= We can e|ther accept the proposal and transition to the
new state X', or ct it and stay at x.

= We can show that with the foIIowmg acceptance probabilities
(and the re rdqularlty assumption) —achain as the unique

stationary distribution (proo

A\ A(X > X') = min[l,

31




Metropolis- Hastlngs algorlthm (3/3)

= Each local transition -:-
proposal distribution an

this chain has the fornm
min
P

= The proposal distributions are usuaIIy falr y smFe SO it
is easy to compute their ratios.

« In the case of_graphlcal models, the first ratio can also be

Similarly to Gibbs sampling, x; can be
reduced to the Markov blanket of X;

32

So far, we discussed various
sampling strategies. Let me talk
about one example of real
applications and “show” you how
different sampling methods work in
a toy model of the application.
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Application & Simulation: Data Association

= Data association problem (aka correspondence problem)

= Relating sensor measurements to parameters in the model that is
being learned.

= For example Jf .. g @'f

n Wewantto,finda f\“jﬂl?‘% v"‘i “;':‘;:ﬁﬂ

correspondence between a set F

3
.y
\_I.$

of (automatically selected) ﬁ‘*’:ﬁ'z ol
landmarks on different 3D scans 8 | ;14 A
of human bodies. 18 &

D. Anguelov, et al. The Correlated Correspondence Algorithm for
i . Unsupervised Registration of Nonrigid Surfaces. NIPS 2004.
= Given a set of image

measurements U={u, for image
i and measurement k}, we want

to know which of the 3D objects ;2 () i
X={x;, 1gjsn} each ) U
measurement corresponds to. B~ R
Nt ? ,@ p o o, h
&, Lol
F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun. (U t"u
EM, MCMC, and Chain Flipping for Structure from Motion s
with Unknown Correspondence. Machine Learning 2003. el 34

Application & Simulation: Data Association

= Data association problem (aka correspondence problem)
= Relating sensor measurements to parameters in the model that is
being learned.
= Example problem

= Given a set of image measurements U={u;, for image i and
measurement k}, we want to know which of the 3D objects X={x;,
1<j<n} each measurement corresponds to.

F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun. e a2
EM, MCMC, and Chain Flipping for Structure from Motion with 5 =
Unknown Correspondence. Machine Learning 2003. . W 35




Applications: Data Association *
o Maximize = 2>,L(6;U,J

= J's are hidden variables —(EM algorithm

= The E-step requires inferencéP(J] U, (@)

= This problem has been tackled using range of models and a
variety of inference methods including MCMC

= Efficiency is important and we will “see” how various MCMC-
based methods show varying performance

- : X
i,=3 ) 3,3 7
11 o5, 2
125:4
B2 B2
13 x 21 o “13
<1 =1 o i =1 u
Uiy 12 24 u-“ ]
F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun. 12 24
EM, MCMC, and Chain Flipping for Structure from Motion with
Unknown Correspondence. Machine Learning 2003. ,m‘ W11,

Toy Model for Data Association
= Blue dots: variables,@(i=1,2,3,4)

= Red dots: ébservations)Y- (G=1,2,3,4)

= Correspondence variabl ={1,2,3,4} assigns t@one of
G X

I

ifferent value

%

(A)
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How do we sample from it?
= Add one obser@@ (such that Gibbs would work)

\L/Q .

3 NGV

s S
M L ° [
< N PCCI XY)
otk Gas ek ame 3P G e
! @ . . .

= Two modes:

/Metropolis Hastings

= Take larger steps using &+
(We will come to details of this later.)

38

Let’s "See” How They Work

= Run the following Matlab scripts:
VisualMCMC1(10000, 0.1, 0.05);
% live animation of sampling

% parameters: num of samples, sigma, pause time
after each sample

Plot1;

% the first few lines of Plotl.m contain the parameters

you may want to play around with

39




Plots generated by "Plotl”

Glbks BlockGibbs  Meto polis Hasting q

M g ™ A
| 2 astane S e AT i
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Zos ol N P
WY #

estimate of p1(1) in window of size 500

3 03
0z 0z
01 01
. L " . L 0
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08
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Acknowledgement

= The MCMC sampler shown in class was written by
Huayan Wang (Stanford, CS).

= These lecture slides were generated based on the
slides from Prof Eran Segal and Huanyan Wang.

CSE 515 — Statistical Methods — Spring 2011 41




