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Lecture 15 – May 16, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Approximate 
Inference I

Readings: K&F 12.1, 12.2, 12.3, 12.4

Inference
Inference is widely used,

Probabilistic queries: Given E=e, what is P(X|E=e)?
For example, given E=image what is P(X=labels|E=image)=?

Learning parameters with partially observed data
EM, gradient ascent, etc

but exact inference is expensive
O(Nn), where N=maxi|Val(Ci)|
Exponential blowup can be in Ni which for factor i can be vm

if factor i has m variables with v values each.
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X11=1          X12=1          X13=2           X14=2

X21=1          X22=2          X23=2           X24=3

X31=1           X32=2         X33=3            X34=3 A grid-structured 
Markov network

Image from the website of Prof Daphne Koller’s lab
(http://dags.stanford.edu/projects/scenedataset.html)

Image from the website of Prof Daphne Koller’s lab
(http://dags.stanford.edu/projects/scenedataset.html)
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Approximate Inference Overview

Full particle methods
Sampling methods
Deterministic particle generation

Distributional particles
Applications & Simulation: data association

Inference as optimization
Generalized Belief Propagation
Propagation with approximate messages
Structured variational approximations 4

Particle-based approximate inference

Global approximate inference

Today…

Particle-based Approximate Inference
General framework

Generate particles (samples) x[1],...,x[M] from P
Estimate function f by 

For a function f(X)=1(Y=y)
P(Y=y) can be written as EP[f]

How particles are generated?
Use forward sampling
Use likelihood weighting sampling

CSE 515 – Statistical Methods – Spring 2011 5

∑ =
≈

M

mP mxf
M

fE
1

])[(1)(



3

Particle-Based Methods Overview
Full particle methods

Sampling methods
Forward sampling, Likelihood weighting
(Un-normalized/normalized) Importance sampling
Markov chain Monte Carlo

Deterministic particle generation

Distributional particles
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Unnormalized Importance Sampling
For any distribution Q(X), since:

We can estimate f(x) by generating samples from 
Q and estimating:

Can show that estimator variance decreases with more 
samples M
Can show that Q=P is the lowest variance estimator 
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Normalized Importance Sampling
Un-normalized importance sampling assumes known P

Usually we know P up to a constant P = P’/α, where α=ΣxP’(x)
Example: Posterior distribution P(X|E=e) = P(X,E=e) / α where 
α=P(E=e)

We can estimate α by: 
Thus
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Normalized Importance Sampling

Given M samples from Q, normalized sampling 
estimates function f by:
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Importance Sampling for BayesNets
Let’s think about how to generate particles to estimate 
P(Y|e)
Define mutilated network GE=e as:

Nodes X∈E have no parents in GE=e
Nodes X∈E have CPD that is 1 for X=E[X] and 0 otherwise
The parents and CPDs for all other variables are unchanged

G

L

S

D Id0 d1

0.4 0.6

i0 i1

0.7 0.3

G l0 l1

g0 0.1 0.9

g1 0.4 0.6

g2 0.99 0.01

E = {S=s1, G=g2}

G

L

S

D I

Original 
network G

g0 g1 g2

0 0 1

s0 s1

0 1

Proposal distribution Q(X,e)=PGE=e
(X,e)

Target distribution P’(X,e)

Mutilated 
network GE=e
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Likelihood Weighting as IS
Target distribution P’(X,e)
Proposal distribution Q(X,e)=PGE=e

(X,e)

Claim: Likelihood weighting is precisely normalized 
importance sampling with the above distributions

Proof sketch:
LW estimate:

IS estimate: 

But w[m] in LW precisely comes out to be P’(x[m])/Q(x[m])
Since 
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Particle-Based Methods Overview
Full particle methods

Sampling methods
Forward sampling
Importance sampling
Markov chain Monte Carlo (MCMC)

Deterministic particle generation

Distributional particles

12

Markov Chain Monte Carlo
Limitations of importance sampling

An evidence node affects the sampling only for nodes that are 
its descendants.
The effect on nodes that are non-descendants is accounted 
for only by the weights w’s.
What if much of the evidence is at the leaves of the network?

We are essentially sampling from the prior distribution P(X), which 
is often very far from the desired posterior P(X|E=e).
→ Decreases the accuracy of the estimates 

An alternative sampling approach
General idea: Define a sampling process that is guaranteed to 
converge to taking samples from the posterior distribution of 
interest P(X|E=e)
Generate samples from the sampling process
Estimate f(X) from the samples

13
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Markov Chains
A Markov chain consists of

A state space Val(X)
Transition probability T(x x’) of going from state x to x’

Distribution over subsequent states is defined as
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Distribution over the “next” state Distribution over the “current” state

Stationary Distribution

A distribution π(X) is a stationary distribution for 
a Markov chain T if it satisfies
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Markov Chains & Stationary Dist.
A Markov chain is regular if there is k such that for 
every x, x’∈Val(X), the probability of getting from x 
to x’ in exactly k steps is greater than zero

Theorem: A finite state Markov chain T has a 
unique stationary distribution if and only if it is 
regular

Goal: Define a Markov chain whose stationary 
distribution is P(X|e)

16

Gibbs Sampling
States

Legal (=consistent with evidence) assignments to 
variables

Transition probability
T = T1⋅...⋅Tk

For each variable Xi, let X-i be X-{Xi}. Say that X-i =x-i.
Ti = T((x-i, xi) → (x-i, x’i)) = P(x’i|x-i)

Claim: P(X|e) is a stationary distribution to the 
chain

17
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Gibbs Sampling

Gibbs-sampling Markov chain is regular if:
Bayesian networks: all CPDs are strictly positive 
Markov networks: all clique potentials are strictly positive

Gibbs sampling procedure (generating one sample x[m])
Set x[m]=x[m-1]
For each variable Xi ∈ X-E

Set x-i = x[m](X-Xi)
Sample from P(Xi | x-i)
Save sample x[m](Xi) = sampled value

Return x[m]

Note: P(Xi | x-i) is easily computed from Markov blanket
18

A couple slides ago…

→ has a stationary distribution

Gibbs Sampling
How do we evaluate P(Xi | x-i) ?

Again, let x-i = {x1,...,xi-1,xi+1,...,xn}

Let’s say that P factorizes as

Let xj,-i denote the assignment in x-i to Dj-{Xi}, 

The last term uses only the factors involving Xi. 
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Gibbs Sampling in Practice
We need to wait until the burn-in time has ended –
number of steps until we take samples from the chain

We want to wait until the sampling distribution is close to the 
stationary distribution
Hard to provide bounds in general for this ‘mixing time’
Once the burn-in time ended, all samples are from the 
stationary distribution

Note: after the burn-in time, samples are correlated. 
Consecutive samples from the same trajectory are 
correlated.

Since no theoretical guarantees exist, application of 
Markov chains is somewhat of an art

We can evaluate burn-in time by comparing the estimates 
from multiple chains 1,…,K

20
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Sampling Strategy
How do we collect the samples?
Strategy I:

Run the chain M times, each run for N steps 
Each run starts from a different state

Return the last state in each run

Strategy II:
Run one chain for a long time
After some “burn in” period, sample points every some 
fixed number of steps

M
 chains

“burn in” M samples from one chain
21
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Comparing Strategies
Strategy I:

Better chance of “covering” the space of 
points, especially if the chain is slow to reach 
the stationary distribution
Have to perform “burn in” steps for each chain

22

Strategy II:
Perform “burn in” only once
Samples might be correlated (although only weakly)

Hybrid strategy: 
Run several chains, and sample few samples from each
Combines benefits of both strategies

Particle-Based Methods Overview
Full particle methods

Sampling methods
Forward sampling
Importance sampling
Markov chain Monte Carlo

Deterministic particle generation

Distributional particles

23
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Deterministic Search Methods
Idea: if the distribution is dominated by a small set of 
instances, it suffices to consider only them for 
approximating the function

For instances that we generate x[1],...x[M], estimate is:

Note: we can obtain lower and upper bounds by examining 
the part of the probability mass covered by ΣP(x[m])

Key: how can we enumerate highly probably 
instantiations?

Note: the single most probably instantiation is MPE which itself 
is an NP-hard problem
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Sum of probabilities 
that f is 0.

Particle-Based Methods Overview
Full particle methods

Sampling methods
Forward sampling
Importance sampling
Markov chain Monte Carlo

Deterministic particle generation

Distributional particles
Until now, we discussed the cases where we are given 
particles that have full assignment of values on all 
variables.
Can we use a partial assignment to estimate f?

25
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Distributional Particles
Idea: use partial assignments to a subset of the 
network variables, combined with closed form 
representation of a distribution over the rest

Xp – Variables whose assignments are defined by particles
Xd – Variables over which we maintain a distribution
Distributional particles are a.k.a Rao-Blackwellized particles
Estimation proceeds as

We can use any sampling procedure to sample Xp

We assume that we can compute the internal expectation efficiently
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Distributional Particles
Distributional particles define a continuum between

For |Xp|=|X-E| we have full particles and thus full 
sampling
For |Xp|= 0 we are performing full exact inference

Distributional Likelihood Weighting
Sample over a subset of the variables

Distributional Gibbs Sampling 
Sample only a subset of the variables, transition 
probability is as before T((ui, xi) → (ui, x’i)) = P(x’i|ui) 
but the computation may require inference
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Broader Class of Markov Chains
Limitations of Gibbs sampling

The Gibbs chain uses only very local moves over the 
state space: moves that chance only one variable at a 
time.
High-probability states will form strong basins of 
attraction, and the chain will be very unlikely to move 
away from such a state → the chain will mix very slowly.
We want to consider chains that allow a broader range of 
moves, including much larger steps in the space.

Solutions
Block Gibbs sampling
Metropolis-Hastings algorithm

28

Block Gibbs Sampling
There are cases where we can simultaneously 
sample several variables efficiently

Block Gibbs algorithm
Assume that we can partition the variables X into 
several disjoint blocks of variables X1,…,Xk, such that 
we efficiently sample xi from P(Xi|x1,…,xi-1,xi+1,…,xk)
Simple modification to Gibbs: Iteratively sample blocks 
of variables, rather than individual variables
It takes much “longer-range” transitions in the state 
space in a single sample step

CSE 515 – Statistical Methods – Spring 2011 29
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Metropolis-Hastings algorithm (1/3)
Unlike the Gibbs chain, M-H algorithm does not 
assume that we can generate next-state samples 
from a particular target distribution

It uses the idea of a proposal distribution Q that we have 
already seen in the case of IS.

Basic ideas
We sample from a different distribution Q and then correct 
for the resulting error.
However, unlike importance sampling, we do not want to 
keep track of importance weights.

They are going to decay exponentially with the number of 
transitions, leading to a whole slew of problems

Instead, we randomly choose whether to accept the 
proposed transition, with a probability that corrects for the 
discrepancy between Q and the target distribution P 30

Metropolis-Hastings algorithm (2/3)
Let our proposal distribution TQ define a transition 
model over our state space

For each state x, TQ defines a distribution over possible 
successor states in Val(X), from which we select randomly a 
candidate next state x’

We can either accept the proposal and transition to the 
new state x’, or reject it and stay at x.

For each states x, x’, we have an acceptance probability 
A(x→x’). Then, the actual transition model of the Markov chain 
is 

We can show that with the following acceptance probabilities 
(and the regularity assumption), a chain T has the unique 
stationary distribution (proof in K&F page 516)
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Metropolis-Hastings algorithm (3/3)

The M-H algorithm has a particularly natural 
implementation in the context of graphical models.

Each local transition model Ti is defined via an associated 
proposal distribution     , and the acceptance probability for 
this chain has the form:

The proposal distributions are usually fairly simple, so it 
is easy to compute their ratios. 

In the case of graphical models, the first ratio can also be 
computed easily:
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Similarly to Gibbs sampling, x-i can be 
reduced to the Markov blanket of Xi

So far, we discussed various 
sampling strategies.  Let me talk 
about one example of real 
applications and “show” you how 
different sampling methods work in 
a toy model of the application.
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Application & Simulation: Data Association

F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion 
with Unknown Correspondence.  Machine Learning 2003. 34

Data association problem (aka correspondence problem)
Relating sensor measurements to parameters in the model that is 
being learned.

For example,
We want to find a 
correspondence between a set 
of (automatically selected) 
landmarks on different 3D scans 
of human bodies.

Given a set of image 
measurements U={uik for image 
i and measurement k}, we want 
to know which of the 3D objects 
X={xj, 1≤j≤n} each 
measurement corresponds to.

D. Anguelov, et al. The Correlated Correspondence Algorithm for 
Unsupervised Registration of Nonrigid Surfaces. NIPS 2004.

Application & Simulation: Data Association

F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with 
Unknown Correspondence.  Machine Learning 2003. 35

Data association problem (aka correspondence problem)
Relating sensor measurements to parameters in the model that is 
being learned.

Example problem
Given a set of image measurements U={uik for image i and 
measurement k}, we want to know which of the 3D objects X={xj, 
1≤j≤n} each measurement corresponds to.
To model the correspondence between measurements uik and 3D 
object xj, we introduce a correspondence vector J.
For each measurement uik, the vector J contains an indicator 
variable jik indicating that uik is assigned to the jik-th object x.
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Applications: Data Association 36

Maximize L(Θ;U) = ∑JL(Θ;U,J)
J’s are hidden variables → EM algorithm
The E-step requires inference P(J| U, Θ(t))
This problem has been tackled using range of models and a 
variety of inference methods including MCMC
Efficiency is important and we will “see” that how various 
MCMC-based methods show varying performance

F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with 
Unknown Correspondence.  Machine Learning 2003. 

Toy Model for Data Association 
Blue dots: variables, Xi (i=1,2,3,4)
Red dots: observations Yj (j=1,2,3,4)
Correspondence variable Ci ={1,2,3,4} assigns to Xi one of 
the observations

What does the distribution look like?

distance

(A) (B) (C)
37
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How do we sample from it?
Add one observation (such that Gibbs would work)

Two modes:

Gibbs
How does it traverse between the two modes?

Block Gibbs (block size = 2)
How do we sample?

Metropolis Hasting
Take larger steps using a proposal distribution. 
(We will come to details of this later.)

38

Let’s “See” How They Work
Run the following Matlab scripts:
VisualMCMC1(10000, 0.1, 0.05);

% live animation of sampling
% parameters: num of samples, sigma, pause time 
after each sample

Plot1;
% the first few lines of Plot1.m contain the parameters 
you may want to play around with

39
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Plots generated by “Plot1” 

40
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