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Inference

= Inference is widely used,

= Probabilistic queries: Given E=e, what is P(X|E=e)?
= For example, g|ven E=image what is P(X=Iabels|E=image)=

Image from the website of Prof Daphne Koller’s lab
(http://dags.stanford.edu/projects/scenedataset.html)

Image from the website of Prof Daphne Kollel e (Ko A K Xy —— X)L e
(http://dags.stanford.edu/projects/scenedataset. o

d-structured
Markov network

= Learning parameters with partially observed data
= EM, gradient ascent, etc

= but exact inference is expensive
= O(Nn), where N=max;|Val(C))|
« Exponential blowup can be in N; which for factor i can be v™

if factor i has m variables with v values each. ;




Approximate Inference Overview
Particle-based approximate inference

= Full particle methods
= Sampling methods Today...
= Deterministic particle generation

= Distributional particles
= Applications & Simulation: data association

Global approximate inference

= Inference as optimization

= Generalized Belief Propagation

= Propagation with approximate messages

= Structured variational approximations 4

Particle-based Approximate Inference

General framework
= Generate particles (samples) x[1],...,x[M] from P

Estimate function fby g_(f) zﬁzrl f (x[m])

For a function f(X)=1(Y=y)
P(Y=y) can be written as E;[f]

How particles are generated?
= Use forward sampling
= Use likelihood weighting sampling
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Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling, Likelihood weighting
E> = (Un-normalized/normalized) Importance sampling
= Markov chain Monte Carlo

= Deterministic particle generation

= Distributional particles

Unnormalized Importance Sampling

= For any distribution Q(X), since:
P(x) P(X)

Eppol T (X)]= XZX FOIP(x) = X%‘,(Q(X) f (X)@ = EQ(X){ F(X) @}

= We can estimate f(x) by generating samples from

Q and estimating: :Tar -
e (f) N LZM ; (X[m]) P(X[m]) distgribution
° M &m=t QUM sz,

= Can show that estimator variance decreases with more

samples M
= Can show that Q=P is the lowest variance estimator




Normalized Importance Sampling

= Un-normalized importance sampling assumes known P

= Usually we know P up to a constant P = P’/a, where a=%,P'(x)

= Example: Posterior distribution P(X|E=e) = P(X,E=e) / o where
o=P(E=e)

i : P'(X) |_ X M: 'X)=a
8 _IV_\:]euzan estimate o by: EQ(X,{Q(X)}—XEZX)Q( )Q(X) XEZX)P( )
. Eppolf (X1 = P()(X)
=3 Q) f (\P(x)/Q(X)
-3, QM) F(P'(0/Q(Y)

_ é Eouol f 0P (X)/Q(x)]

Equolf (X)P'(x)/Q(X)]
Equo[P'(X)/Q(X)]

Normalized Importance Sampling

Equol f (X)P'(x)/Q(X)]
Eqoo[P'(X)/Q(X)]

EP(X)[ f(X)]=

= Given M samples from Q, normalized sampling
estimates function f by:

o EOI]DP (qm])/ Q(x{m])

E.(f)~ Z
> P (xqm])/ Q(x[m])




Importance Sampling for BayesNets

= Let’s think about how to generate particles to estimate
P(Yle)
= Define mutilated network Gg_, as:
= Nodes XeE have no parents in Gg_,
= Nodes XeE have CPD that is 1 for X=E[X] and 0 otherwise
= The parents and CPDs for all other variables are unchanged

— ~ 1 ~ 2 do dl iO il
E = {S=s', G=g°} 04 |06 @ @ 07 |03

q° gt g2 S0 st
0 0 1 0 1

Original Mutilated

network G G |® F network Gg_,
g |01 09
Target distribution P'(X,e) g |04 06
g |099 0.01

Proposal distribution Q(X,e):PGE:e(X,e) 10

Likelihood Weighting as IS

= Target distribution P'(X,e)
= Proposal distribution Q(X,e)=PGE=e(X,e)

= Claim: Likelihood weighting is precisely normalized
importance sampling with the above distributions

T e oy ey« T MM =)
X wm]
- IS estimate: p(y|e)~ Do P(xIm]) / Q(x[mD)I{X[m](Y) = v}
Yo P (xIm])/Q(x[m])
= But w[m] in LW precisely comes out to be P'(x[m])/Q(x[m])
= Since
[TPGE1PaEe ) TP(X;|Pa(X,))
P'(x[m g cE X;2E
Qo TTPCx, Pacxy)  ALP@IPate) =wim]

X ¢E 11




Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling
= Importance sampling
E> = Markov chain Monte Carlo (MCMC)

= Deterministic particle generation

= Distributional particles

12

Markov Chain Monte Carlo

= Limitations of importance sampling

= An evidence node affects the sampling only for nodes that are
its descendants.

= The effect on nodes that are non-descendants is accounted
for only by the weights w’s.

= What if much of the evidence is at the leaves of the network?

= We are essentially sampling from the prior distribution P(X), which
is often very far from the desired posterior P(X|E=e).

= — Decreases the accuracy of the estimates

= An alternative sampling approach

= General idea: Define a sampling process that is guaranteed to
converge to taking samples from the posterior distribution of
interest P(X|E=e)

= Generate samples from the sampling process

= Estimate f(X) from the samples

13




Markov Chains

= A Markov chain consists of
= A state space Val(X)
= Transition probability T(x=>x") of going from state x to x’

= Distribution over subsequent states is defined as

| Distribution over the “next” state | | Distribution over the “current” state |

PUD (X ) = ) = erVal(X) POX® =x)T (x> x)

0.25 0.7

0.3
0.75 @

Simple Markov chain
14

Stationary Distribution

| Distribution over the “next” state | | Distribution over the “current” state |

P(”l)(X (t+) _ X') = erval(x) P(t)(X ® _ X)T (X — x')

= A distribution =(X) is a stationary distribution for
a Markov chain T if it satisfies

(X =x)= erVaI(x)zr(X =X)T(x —> x')

z(x) =0.257(x')+0.57(x%)
7(x*) =0.77(x*)+0.57(x%)
7(x*) =0.757(x")+0.37(x*) 0.25

7Z'(Xl) =0.2 0.3
7(x*) =05
z(x}) =03

Simple Markov chain

15




Markov Chains & Stationary Dist.

= A Markov chain is regular if there is k such that for
every X, x'eVal(X), the probability of getting from x
to X’ in exactly k steps is greater than zero

= Theorem: A finite state Markov chain T has a
unique stationary distribution if and only if it is
regular

= Goal: Define a Markov chain whose stationary
distribution is P(X|e)

16

Gibbs Sampling

a States

» Legal (=consistent with evidence) assignments to
variables

= Transition probability
s T=T,...T,
= For each variable X;, let X be X-{X;}. Say that X_; =x.
T = T((X.i, %) = (X5, X7) = P(X[x)

= Claim: P(X|e) is a stationary distribution to the
chain

17




A couple slides ago...

G | bbs Sa m pl | ng = A Markov chain is reguiar ir there Is k such that for

every x, x'eVal(X), the probability of getting from x
to x" in exactly k steps is greater than zero
- has a stationary distribution

= Gibbs-sampling Markov chain is regular if:
= Bayesian networks: all CPDs are strictly positive
= Markov networks: all clique potentials are strictly positive

= Gibbs sampling procedure (generating one sample x[m])
= Set x[m]=x[m-1]
= For each variable X, € X-E
= Set x; = x[m](X-X)
= Sample from P(X; | x_;)
= Save sample xim](X;) = sampled value
= Return x[m]

= Note: P(X; | x;) is easily computed from Markov blanket
18

Gibbs Sampling

= How do we evaluate P(X; | x;) ?
| | Agaln, |et X'i = {Xll.-.,Xi_IIXH_l,-..,Xn}

= Let's say that P factorizes as
PO9=2T1#,(0)= [14©) []40®)

i*XjeD; iXieD;
= Let x; ; denote the assignment in x; to D;-{X;},
PG, %)
ZX.HP(Xi”1X—i

H¢j(xi"xj,—i) H¢j(xj,—i) H¢j(xi"xj,—i)

P(Xil|x—i) =

_ j:X;eD; i*X;eDj _ j:X;eD;
DI [ CACSRSION B CACTIO NI S [ (R
' jiX;eD; j:X;€D; ' jiX;eD;

= The last term uses only the factors involving X.
19




Gibbs Sampling in Practice

= We need to wait until the burn-in time has ended —
number of steps until we take samples from the chain

= We want to wait until the sampling distribution is close to the
stationary distribution

= Hard to provide bounds in general for this ‘mixing time’

= Once the burn-in time ended, all samples are from the
stationary distribution

= Note: after the burn-in time, samples are correlated.
Consecutive samples from the same trajectory are
correlated.

= Since no theoretical guarantees exist, application of
Markov chains is somewhat of an art
= We can evaluate burn-in time by comparing the estimates
~ 1 ™ K . .
Ek(f)zﬁzm:lf(x [ml,e) from multiple chains 1,...,K

20

Sampling Strategy

= How do we collect the samples?

= Strategy I:

= Run the chain M times, each run for N steps
= Each run starts from a different state ®

= Return the last state in each run —_—

= Strategy II: -4
= Run one chain for a long time -y
= After some “burn in” period, sample points every some

fixed number of steps

——0—0—0—0—0—0—0—0
N _

swevqa I

A\Y H" /4 v -
burn in” M samples from one chain
21




Comparing Strategies

Strategy I:
= Better chance of “covering” the space of _._‘1 =
points, especially if the chain is slow to reach ——@ | %
the stationary distribution :.‘[ =
e

= Have to perform “burn in” steps for each chain ——e

Strategy II:
= Perform “burn in” only once
= Samples might be correlated (although only weakly)

—ee e GO

“burn in” M samples from one chain

Hybrid strategy:
= Run several chains, and sample few samples from each

= Combines benefits of both strategies »

Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling
= Importance sampling
= Markov chain Monte Carlo

|:> = Deterministic particle generation

= Distributional particles

23




Deterministic Search Methods

= Idea: if the distribution is dominated by a small set of
instances, it suffices to consider only them for
approximating the function
= For instances that we generate x[1],...X[M], estimate is:

E.(f)= > f(xImD)P(x{m])

= Note: we can obtain lower and upper bounds by examining
the part of the probability mass covered by XP(x[m])

> fOImDP(XIM]) < B, (f) < (1— > -t (X[m]))P(X[m]))

| Sum of probabilities
that f is 0.

= Key: how can we enumerate highly probably
instantiations?

= Note: the single most probably instantiation is MPE which itself
is an NP-hard problem

24

Particle-Based Methods Overview

= Full particle methods

= Sampling methods
« Forward sampling
= Importance sampling
= Markov chain Monte Carlo

= Deterministic particle generation

== Distributional particles

= Until now, we discussed the cases where we are given
particles that have full assignment of values on all
variables.

= Can we use a partial assignment to estimate f?

25




Distributional Particles

= Idea: use partial assignments to a subset of the
network variables, combined with closed form
representation of a distribution over the rest
= X, — Variables whose assignments are defined by particles
= X4 — Variables over which we maintain a distribution
= Distributional particles are a.k.a Rao-Blackwellized particles
= Estimation proceeds as

EP|e(f) = Zx Xg I:)(Xplxd |e) f (Xp' Xd)
=2, P18 Plxg|x,,8)f(x,,%,)
= pr P(Xp | e)(EP(Xd|Xp,e)[f (Xp » Xy )])

= We can use any sampling procedure to sample X,
= We assume that we can compute the internal expectation efficiently

26

Distributional Particles

= Distributional particles define a continuum between

= For [X,|=|X-E| we have full particles and thus full
sampling

= For |X,|= 0 we are performing full exact inference

= Distributional Likelihood Weighting
= Sample over a subset of the variables

3 WM e EOAMICY) = ¥3)

2]

= Distributional Gibbs Sampling

= Sample only a subset of the variables, transition
probability is as before T((u;, x;) = (u;, X)) = P(X’j|u;)
but the computation may require inference

P(yle)~

27




Broader Class of Markov Chains

= Limitations of Gibbs sampling

= The Gibbs chain uses only very local moves over the
state space: moves that chance only one variable at a
time.

= High-probability states will form strong basins of
attraction, and the chain will be very unlikely to move
away from such a state - the chain will mix very slowly.

= We want to consider chains that allow a broader range of
moves, including much larger steps in the space.

= Solutions
= Block Gibbs sampling
= Metropolis-Hastings algorithm

28

Block Gibbs Sampling

= There are cases where we can simultaneously
sample several variables efficiently

= Block Gibbs algorithm

= Assume that we can partition the variables X into
several disjoint blocks of variables Xj,...,X,, such that
we efficiently sample x; from P(X;| X1, ..., X1, X417+ %)

= Simple modification to Gibbs: Iteratively sample blocks
of variables, rather than individual variables

= It takes much “longer-range” transitions in the state
space in a single sample step

CSE 515 — Statistical Methods — Spring 2011 29




Metropolis-Hastings algorithm (1/3)

= Unlike the Gibbs chain, M-H algorithm does not
assume that we can generate next-state samples
from a particular target distribution

= It uses the idea of a proposal distribution Q that we have
already seen in the case of IS.

» Basic ideas

= We sample from a different distribution Q and then correct
for the resulting error.

= However, unlike importance sampling, we do not want to
keep track of importance weights.
= They are going to decay exponentially with the number of
transitions, leading to a whole slew of problems
= Instead, we randomly choose whether to accept the
proposed transition, with a probability that corrects for the
discrepancy between Q and the target distribution P 30

Metropolis-Hastings algorithm (2/3)

= Let our proposal distribution T2 define a transition
model over our state space

= For each state x, TQ defines a distribution over possible
successor states in Val(X), from which we select randomly a
candidate next state x’

= We can either accept the proposal and transition to the
new state X/, or reject it and stay at x.

= For each states x, x’, we have an acceptance probability _
A(x->x’). Then, the actual transition model of the Markov chain

T(x=>Xx)=Tx— x)A(X—> X" X# X'
T(x—>x)=Tx>x)+>, TUx—>x)1-Ax—> X))

= We can show that with the following acceptance probabilities
(and the r%qularity assumption), a chain T has the unique
stationary distribution (proof in K&F page 516)

7(X)Te(X' > x)}

7(X)Tx > x")

A(X—>x') = min[l,
31




Metropolis-Hastings algorithm (3/3)
A(X > X') = min L 2T > %)
"Z()T(Xx > X)
= The M-H algorithm has a particularly natural
implementation in the context of graphical models.

» Each local transition model T, is defined via an associated
proposal distribution T.% and the acceptance probability for

this chain has the formi: .
X')= min{l, PO, % )T, _' (X0 X _)Xilxi):|
P(X—ilxi)Tin (XX =X, %")

AX X = X, X

= The proposal distributions are usually fairly simple, so it
is easy to compute their ratios.
« In the case of graphical models, the first ratio can also be
computed easily:

. . Similarly to Gibbs sampling, x; can be
PO, X)) _ POIX, reduced to the Markov blanket of X
P(x..%) PO [x5)

32

So far, we discussed various
sampling strategies. Let me talk
about one example of real
applications and “show” you how
different sampling methods work in
a toy model of the application.
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Application & Simulation: Data Association

= Data association problem (aka correspondence problem)

= Relating sensor measurements to parameters in the model that is
being learned.

= For example,

= We want to find a
correspondence between a set F
of (automatically selected)
landmarks on different 3D scans
of human bodies.

D. Anguelov, et al. The Correlated Correspondence Algorithm for
Unsupervised Registration of Nonrigid Surfaces. NIPS 2004.

= Given a set of image
measurements U={u,, for image
i and measurement k}, we want

to know which of the 3D objects = o Nig?
X={x;, 1gjsn} each ~ iy
measurement corresponds to. B2 N

F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun. S =

EM, MCMC, and Chain Flipping for Structure from Motion s m

with Unknown Correspondence. Machine Learning 2003. = ti3g

Application & Simulation: Data Association

= Data association problem (aka correspondence problem)

= Relating sensor measurements to parameters in the model that is
being learned.

= Example problem

= Given a set of image measurements U={u;, for image i and
measurement k}, we want to know which of the 3D objects X={x;,
1<j<n} each measurement corresponds to.

= To model the correspondence between measurements u; and 3D
object x;, we introduce a correspondence vector J.

= For each measurement u,, the vector J contains an indicator
variable j indicating that u, is assigned to the j, -th object x.

F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun. e a2
EM, MCMC, and Chain Flipping for Structure from Motion with 5 =
Unknown Correspondence. Machine Learning 2003. . W 35




Applications: Data Association *

= Maximize L(OQ;U) = 3,L(©;U,J)
= J's are hidden variables - EM algorithm
= The E-step requires inference P(J| U, ©®)

= This problem has been tackled using range of models and a
variety of inference methods including MCMC

» Efficiency is important and we will “see” that how various
MCMC-based methods show varying performance

.XS

- : X
i,=3 ! 3,3 7
11 o5, 2
iy~
=2 =2
5= b ot
X 23
i e . u
1 il It B
L3 1 = =
. .ﬁ Ll n
F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun. 1 24
EM, MCMC, and Chain Flipping for Structure from Motion with
Unknown Correspondence. Machine Learning 2003. .m‘ W11,

Toy Model for Data Association

= Blue dots: variables, X; (i=1,2,3,4)
= Red dots: observations Y; (j=1,2,3,4)

= Correspondence variable C, ={1,2,3,4} assigns to X; one of
the observations

distance
L ]
® ®

4
'r.f - | w v .
P(X) o exp(— Z I —)LC‘—“')) if every a; has a different value
® L] i=1

P(X)=0 otherwise
L] L]
®

= What does the distribution look like?

0 _NJU WL
(A) (B) ©)
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How do we sample from it?
= Add one observation (such that Gibbs would work)

- ~
Two modes: \.\ f./. P P
O~

L ® e
Viu
®
Gibbs

= How does it traverse between the two modes?

Block Gibbs (block size = 2)

= How do we sample?

Metropolis Hasting

= Take larger steps using a proposal distribution.
(We will come to details of this later.)

38

Let’s “"See” How They Work

= Run the following Matlab scripts:
VisualMCMC1(10000, 0.1, 0.05);
% live animation of sampling

% parameters: num of samples, sigma, pause time
after each sample

Plot1;

% the first few lines of Plotl.m contain the parameters

you may want to play around with

39




Plots generated by "Plotl”

Glbks BlockGibbs  Meto polis Hasting q

M g ™ A
| 2 astane S e AT i
= PR Sl AN X AR
Zos ol N P
WY #

estimate of p1(1) in window of size 500

3 03
0z 0z
01 01
. L " . L 0
number of samples (lotal: S000, discarded first 0) number of sampies fiotal: S000, discarded first 0)
Block Globs Metropolis Hasting
08
XK
o @ %
04 x
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X
x
N X
[l 0z 0 06 0 ] 0z a [ 08
haini haint 40
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